23 resultados para Reformatory (Boonville, Mo.)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated high temperature Mo isotope fractionation in a hydrous supra-subduction volcano-plutonic system (Kos, Aegean Arc, Greece) in order to address the debate on the δ98/95Mo variability of the continental crust. In this igneous system, where differentiation is interpreted to be dominated by fractional crystallization, bulk rock data from olivine basalt to dacite show δ98/95Mo ratios increasing from +0.3 to +0.6‰ along with Mo concentrations increasing from 0.8 to 4.1 μg g−1. Data for hornblende and biotite mineral separates reveal the extraction of light Mo into crystallizing silicates, with minimum partition coefficients between hornblende- silicate melt and biotite-silicate melt of 0.6 and 0.4 δ98/95Mo, respectively. Our data document significant Mo isotope fractionation at magmatic temperatures, hence, the igneous contribution to continental runoff is variable, besides probable source-related variability. Based on these results and published data an average continental δ98/95Mo of +0.3 to +0.4‰ can be derived. This signature corresponds more closely to the average of published data of dissolved Mo loads of large rivers than previous estimates and is consistent with an upper limit of δ98/95Mo = 0.4‰ of the Earth's upper crust as derived from the analysis of molybdenites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Neoproterozoic was a major turning point in Earth's surficial history, recording several widespread glaciations, the first appearance of complex metazoan life, and a major increase in atmospheric oxygen. Marine redox proxies have resulted in many different estimates of both the timing and magnitude of the increase in free oxygen, although the consensus has been that it occurred following the Marinoan glaciation, the second globally recorded “snowball Earth” event. A critically understudied rock type of the Neoproterozoic is iron formation associated with the Sturtian (first) glaciation. Samples from the <716 Ma Rapitan iron formation were analysed for their Re concentrations and Mo isotopic composition to refine the redox history of its depositional basin. Rhenium concentrations and Re/Mo ratios are consistently low throughout the bottom and middle of the iron formation, reflecting ferruginous to oxic basinal conditions, but samples from the uppermost jasper layers of the iron formation show significantly higher Re concentrations and Re/Mo ratios, indicating that iron formation deposition was terminated by a shift towards a sulfidic water column. Similarly, the δ98Mo values are close to 0.0‰ throughout most of the iron formation, but rise to ~+0.7‰ near the top of the section. The δ98Mo from samples of ferruginous to oxic basinal conditions are the product of adsorption to hematite, indicating that the Neoproterozoic open ocean may have had a δ98Mo of ~1.8‰. Together with the now well-established lack of a positive Eu anomaly in Neoproterozoic iron formations, these results suggest that the ocean was predominantly oxygenated at 700 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we present sedimentological, trace metal, and molecular evidence for tracking bottom water redox-state conditions during the past 12,500 years in nowadays sulfidic and meromictic Lake Cadagno (Switzerland). A 10.5 m long sediment core from the lake covering the Holocene period was investigated for concentration variations of the trace metals Mn and Mo (XRF core scanning and ICP-MS measurements), and for the presence of anoxygenic phototrophic sulfur bacteria (carotenoid pigment analysis and 16S rDNA real time PCR). Our trace metal analysis documents an oxic-intermediate-sulfidic redox-transition period beginning shortly after the lake formation similar to 12.5 kyr ago. The oxic period is characterized by low sedimentary Mn and Mo concentrations, as well as by the absence of any remnants of anoxygenic phototrophic sulfur bacteria. Enhanced accumulation/preservation of Mn (up to 5.6 wt%) in the sediments indicates an intermediate, Mn-enriched oxygenation state with fluctuating redox conditions during a similar to 2300-year long transition interval between similar to 12.1 and 9.8 kyr BP. We propose that the high Mn concentrations are the result of enhanced Mn2+ leaching from the sediments during reducing conditions and subsequent rapid precipitation of Mn-(oxyhydr) oxide minerals during episodic and short-term water-column mixing events mainly due to flood-induced underflows. At 9800 +/- 130 cal yr BP, a rapid transition to fully sulfidic conditions is indicated by the marked enrichment of Mo in the sediments (up to 490 ppm), accompanied by an abrupt drop in Mn concentrations and the increase of molecular biomarkers that indicate the presence of anoxygenic photosynthetic bacteria in the water column. Persistently high Mo concentrations >80 ppm provide evidence that sulfidic conditions prevailed thereafter until modern times, without any lasting hypolimnetic ventilation and reoxygenation. Hence, Lake Cadagno with its persistently stable chemocline offers a framework to study in great temporal detail over similar to 12 kyr the development of phototrophic sulfur bacteria communities and redox processes in a sulfidic environment, possibly depicting analogous conditions in an ancient ocean. Our study underscores the value of combining sedimentological, geochemical, and microbiological approaches to characterize paleo-environmental and -redox conditions in lacustrine and marine settings.