4 resultados para Reference site
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present the first 7500 yr long multi-proxy record from a raised bog located at the southern Baltic coast, Poland. Testate amoebae, plant macrofossils, pollen and microscopic charcoal were used to reconstruct environmental changes in Pomerania (northern Poland, Kaszuby Lakeland) from a 7-m thick peat archive of Stążki bog dated 5500 BC–AD 1250. We obtained a record of proxies representing different spatial scales: regional vegetation changed simultaneously with local vegetation, and testate amoebae showed a pattern of change similar to that of pollen and plant macrofossils. On the basis of the combined proxies, we distinguished three hydroclimatic stages: moist conditions 5500–3450 BC, drier conditions with regionally increased fires up to 600 BC, and again moist conditions from 600 BC onward. During the drier interval, a first climatic shift to wetter conditions at 1700 BC is indicated by regional pollen as the replacement of Corylus by Carpinus, and locally by, e.g., the increase of Hyalosphenia elegans and mire plants such as Sphagnum sec. Cuspidata. Furthermore, we observed a correlation since 600 BC among the re-expansion of Carpinus (after a sudden decline ca. 950 BC), increased peat accumulation, increase of Hyalosphenia species, and fewer fires, suggesting lower evapotranspiration and a stable high water table in the bog. Fagus started to expand after AD 810 gradually replacing Carpinus, which was possibly due to a gradually more oceanic climate, though we cannot exclude human impact on the forests. Peat accumulation, determined by radiocarbon dating, varied with bog surface wetness. The hydroclimatic phases found in Stążki peatland are similar to moisture changes recorded in other sites from Poland and Europe. This is the first detailed record of hydroclimatic change during the Holocene in the southern Baltic region, so it forms a reference site for further studies on other southern Baltic bogs that are in progress.
Resumo:
HYPOTHESIS: Clinically apparent surgical glove perforation increases the risk of surgical site infection (SSI). DESIGN: Prospective observational cohort study. SETTING: University Hospital Basel, with an average of 28,000 surgical interventions per year. PARTICIPANTS: Consecutive series of 4147 surgical procedures performed in the Visceral Surgery, Vascular Surgery, and Traumatology divisions of the Department of General Surgery. MAIN OUTCOME MEASURES: The outcome of interest was SSI occurrence as assessed pursuant to the Centers of Disease Control and Prevention standards. The primary predictor variable was compromised asepsis due to glove perforation. RESULTS: The overall SSI rate was 4.5% (188 of 4147 procedures). Univariate logistic regression analysis showed a higher likelihood of SSI in procedures in which gloves were perforated compared with interventions with maintained asepsis (odds ratio [OR], 2.0; 95% confidence interval [CI], 1.4-2.8; P < .001). However, multivariate logistic regression analyses showed that the increase in SSI risk with perforated gloves was different for procedures with vs those without surgical antimicrobial prophylaxis (test for effect modification, P = .005). Without antimicrobial prophylaxis, glove perforation entailed significantly higher odds of SSI compared with the reference group with no breach of asepsis (adjusted OR, 4.2; 95% CI, 1.7-10.8; P = .003). On the contrary, when surgical antimicrobial prophylaxis was applied, the likelihood of SSI was not significantly higher for operations in which gloves were punctured (adjusted OR, 1.3; 95% CI, 0.9-1.9; P = .26). CONCLUSION: Without surgical antimicrobial prophylaxis, glove perforation increases the risk of SSI.
Resumo:
An accurate and coherent chronological framework is essential for the interpretation of climatic and environmental records obtained from deep polar ice cores. Until now, one common ice core age scale had been developed based on an inverse dating method (Datice), combining glaciological modelling with absolute and stratigraphic markers between 4 ice cores covering the last 50 ka (thousands of years before present) (Lemieux-Dudon et al., 2010). In this paper, together with the companion paper of Veres et al. (2013), we present an extension of this work back to 800 ka for the NGRIP, TALDICE, EDML, Vostok and EDC ice cores using an improved version of the Datice tool. The AICC2012 (Antarctic Ice Core Chronology 2012) chronology includes numerous new gas and ice stratigraphic links as well as improved evaluation of background and associated variance scenarios. This paper concentrates on the long timescales between 120–800 ka. In this framework, new measurements of δ18Oatm over Marine Isotope Stage (MIS) 11–12 on EDC and a complete δ18Oatm record of the TALDICE ice cores permit us to derive additional orbital gas age constraints. The coherency of the different orbitally deduced ages (from δ18Oatm, δO2/N2 and air content) has been verified before implementation in AICC2012. The new chronology is now independent of other archives and shows only small differences, most of the time within the original uncertainty range calculated by Datice, when compared with the previous ice core reference age scale EDC3, the Dome F chronology, or using a comparison between speleothems and methane. For instance, the largest deviation between AICC2012 and EDC3 (5.4 ka) is obtained around MIS 12. Despite significant modifications of the chronological constraints around MIS 5, now independent of speleothem records in AICC2012, the date of Termination II is very close to the EDC3 one.
Resumo:
The contribution of Starlette, Stella, and AJI-SAI is currently neglected when defining the International Terrestrial Reference Frame, despite a long time series of precise SLR observations and a huge amount of available data. The inferior accuracy of the orbits of low orbiting geodetic satellites is the main reason for this neglect. The Analysis Centers of the International Laser Ranging Service (ILRS ACs) do, however, consider including low orbiting geodetic satellites for deriving the standard ILRS products based on LAGEOS and Etalon satellites, instead of the sparsely observed, and thus, virtually negligible Etalons. We process ten years of SLR observations to Starlette, Stella, AJISAI, and LAGEOS and we assess the impact of these Low Earth Orbiting (LEO) SLR satellites on the SLR-derived parameters. We study different orbit parameterizations, in particular different arc lengths and the impact of pseudo-stochastic pulses and dynamical orbit parameters on the quality of the solutions. We found that the repeatability of the East and North components of station coordinates, the quality of polar coordinates, and the scale estimates of the reference are improved when combining LAGEOS with low orbiting SLR satellites. In the multi-SLR solutions, the scale and the Z component of geocenter coordinates are less affected by deficiencies in solar radiation pressure modeling than in the LAGEOS-1/2 solutions, due to substantially reduced correlations between the Z geocenter coordinate and empirical orbit parameters. Eventually, we found that the standard values of Center-of-mass corrections (CoM) for geodetic LEO satellites are not valid for the currently operating SLR systems. The variations of station-dependent differential range biases reach 52 and 25 mm for AJISAI and Starlette/Stella, respectively, which is why estimating station dependent range biases or using station-dependent CoM, instead of one value for all SLR stations, is strongly recommended.This clearly indicates that the ILRS effort to produce CoM corrections for each satellite, which are site-specific and depend on the system characteristics at the time of tracking,is very important and needs to be implemented in the SLR data analysis.