32 resultados para Real-Time Decision Support System

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the present manuscript is to present the advances performed in medicine using a Personalized Decision Support System (PDSS). The models used in Decision Support Systems (DSS) are examined in combination with Genome Information and Biomarkers to produce personalized result for each individual. The concept of personalize medicine is described in depth and application of PDSS for Cardiovascular Diseases (CVD) and Type-1 Diabetes Mellitus (T1DM) are analyzed. Parameters extracted from genes, biomarkers, nutrition habits, lifestyle and biological measurements feed DSSs, incorporating Artificial Intelligence Modules (AIM), to provide personalized advice, medication and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for the real-time registration of a retinal video sequence captured with a scanning digital ophthalmoscope (SDO) to a retinal composite image is presented. This method is designed for a computer-assisted retinal laser photocoagulation system to compensate for retinal motion and hence enhance the accuracy, speed, and patient safety of retinal laser treatments. The procedure combines intensity and feature-based registration techniques. For the registration of an individual frame, the translational frame-to-frame motion between preceding and current frame is detected by normalized cross correlation. Next, vessel points on the current video frame are identified and an initial transformation estimate is constructed from the calculated translation vector and the quadratic registration matrix of the previous frame. The vessel points are then iteratively matched to the segmented vessel centerline of the composite image to refine the initial transformation and register the video frame to the composite image. Criteria for image quality and algorithm convergence are introduced, which assess the exclusion of single frames from the registration process and enable a loss of tracking signal if necessary. The algorithm was successfully applied to ten different video sequences recorded from patients. It revealed an average accuracy of 2.47 ± 2.0 pixels (∼23.2 ± 18.8 μm) for 2764 evaluated video frames and demonstrated that it meets the clinical requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil erosion on sloping agricultural land poses a serious problem for the environment, as well as for production. In areas with highly erodible soils, such as those in loess zones, application of soil and water conservation measures is crucial to sustain agricultural yields and to prevent or reduce land degradation. The present study, carried out in Faizabad, Tajikistan, was designed to evaluate the potential of local conservation measures on cropland using a spatial modelling approach to provide decision-making support for the planning of spatially explicit sustainable land use. A sampling design to support comparative analysis between well-conserved units and other field units was established in order to estimate factors that determine water erosion, according to the Revised Universal Soil Loss Equation (RUSLE). Such factor-based approaches allow ready application using a geographic information system (GIS) and facilitate straightforward scenario modelling in areas with limited data resources. The study showed first that assessment of erosion and conservation in an area with inhomogeneous vegetation cover requires the integration of plot-based cover. Plot-based vegetation cover can be effectively derived from high-resolution satellite imagery, providing a useful basis for plot-wise conservation planning. Furthermore, thorough field assessments showed that 25.7% of current total cropland is covered by conservation measures (terracing, agroforestry and perennial herbaceous fodder). Assessment of the effectiveness of these local measures, combined with the RUSLE calculations, revealed that current average soil loss could be reduced through low-cost measures such as contouring (by 11%), fodder plants (by 16%), and drainage ditches (by 53%). More expensive measures such as terracing and agroforestry can reduce erosion by as much as 63% (for agroforestry) and 93% (for agroforestry combined with terracing). Indeed, scenario runs for different levels of tolerable erosion rates showed that more cost-intensive and technologically advanced measures would lead to greater reduction of soil loss. However, given economic conditions in Tajikistan, it seems advisable to support the spread of low-cost and labourextensive measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Personal Health Assistant Project (PHA) is a pilot system implementation sponsored by the Kozani Region Governors’ Association (KRGA) and installed in one of the two major public hospitals of the city of Kozani. PHA is intended to demonstrate how a secure, networked, multipurpose electronic health and food benefits digital signage system can transform common TV sets inside patient homes or hospital rooms into health care media players and facilitate information sharing and improve administrative efficiency among private doctors, public health care providers, informal caregivers, and nutrition program private companies, while placing individual patients firmly in control of the information at hand. This case evaluation of the PHA demonstration is intended to provide critical information to other decision makers considering implementing PHA or related digital signage technology at other institutions and public hospitals around the globe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The previously described Nc5-specific PCR test for the diagnosis of Neospora caninum infections was used to develop a quantitative PCR assay which allows the determination of infection intensities within different experimental and diagnostic sample groups. The quantitative PCR was performed by using a dual fluorescent hybridization probe system and the LightCycler Instrument for online detection of amplified DNA. This assay was successfully applied for demonstrating the parasite proliferation kinetics in organotypic slice cultures of rat brain which were infected in vitro with N. caninum tachyzoites. This PCR-based method of parasite quantitation with organotypic brain tissue samples can be regarded as a novel ex vivo approach for exploring different aspects of cerebral N. caninum infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To evaluate the accuracy, safety, and efficacy of cervical nerve root injection therapy using magnetic resonance guidance in an open 1.0 T MRI system. METHODS Between September 2009 and April 2012, a total of 21 patients (9 men, 12 women; mean age 47.1 ± 11.1 years) underwent MR-guided cervical periradicular injection for cervical radicular pain in an open 1.0 T system. An interactive proton density-weighted turbo spin echo (PDw TSE) sequence was used for real-time guidance of the MR-compatible 20-gauge injection needle. Clinical outcome was evaluated on a verbal numeric rating scale (VNRS) before injection therapy (baseline) and at 1 week and 1, 3, and 6 months during follow-up. RESULTS All procedures were technically successful and there were no major complications. The mean preinterventional VNRS score was 7.42 and exhibited a statistically significant decrease (P < 0.001) at all follow-up time points: 3.86 ± 1.53 at 1 week, 3.21 ± 2.19 at 1 month, 2.58 ± 2.54 at 3 months, and 2.76 ± 2.63 at 6 months. At 6 months, 14.3 % of the patients reported complete resolution of radicular pain and 38.1 % each had either significant (4-8 VNRS score points) or mild (1-3 VNRS score points) relief of pain; 9.5 % experienced no pain relief. CONCLUSION Magnetic resonance fluoroscopy-guided periradicular cervical spine injection is an accurate, safe, and efficacious treatment option for patients with cervical radicular pain. The technique may be a promising alternative to fluoroscopy- or CT-guided injections of the cervical spine, especially in young patients and in patients requiring repeat injections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The adequacy of thromboprophylaxis prescriptions in acutely ill hospitalized medical patients needs improvement. OBJECTIVE: To prospectively assess the efficacy of thromboprophylaxis adequacy of various clinical decision support systems (CDSS) with the aim of increasing the use of explicit criteria for thromboprophylaxis prescription in nine Swiss medical services. METHODS: We randomly assigned medical services to a pocket digital assistant program (PDA), pocket cards (PC) and no CDSS (controls). In centers using an electronic chart, an e-alert system (eAlerts) was developed. After 4 months, we compared post-CDSS with baseline thromboprophylaxis adequacy for the various CDSS and control groups. RESULTS: Overall, 1085 patients were included (395 controls, 196 PC, 168 PDA, 326 eAlerts), 651 pre- and 434 post-CDSS implementation: 472 (43.5%) presented a risk of VTE justifying thromboprophylaxis (31.8% pre, 61.1% post) and 556 (51.2%) received thromboprophylaxis (54.2% pre, 46.8% post). The overall adequacy (% patients with adequate prescription) of pre- and post-CDSS implementation was 56.2 and 50.7 for controls (P = 0.29), 67.3 and 45.3 for PC (P = 0.002), 66.0 and 64.9 for PDA (P = 0.99), 50.5 and 56.2 for eAlerts (P = 0.37), respectively, eAlerts limited overprescription (56% pre, 31% post, P = 0.01). CONCLUSION: While pocket cards and handhelds did not improve thromboprophylaxis adequacy, eAlerts had a modest effect, particularly on the reduction of overprescription. This effect only partially contributes to the improvement of patient safety and more work is needed towards institution-tailored tools.