2 resultados para Real building fire

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In grapheme-color synesthesia, the letter "c" printed in black may be experienced as red, but typically the color red does not trigger the experience of the letter "c." Therefore, at the level of subjective experience, cross-activation is usually unidirectional. However, recent evidence from digit-color synesthesia suggests that at an implicit level bidirectional cross-activation can occur. Here we demonstrate that this finding is not restricted to this specific type of synesthesia. We introduce a new method that enables the investigation of bidirectionality in other types of synesthesia. We found that a group of grapheme-color synesthetes, but not a control group, showed a startle in response to a color-inducing grapheme after a startle response was conditioned to the specific corresponding color. These results implicate that when the startle response was associated with the real color an association between shock and the grapheme was also established. By this mechanism (i.e. implicit cross-activation) the conditioned response to the real color generalized to the synesthetic color. We suggest that parietal brain areas are responsible for this neural backfiring.