24 resultados para Real 3G networks
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Since the appearance of downsized and simplified TCP/IP stacks, single nodes from Wireless Sensor Networks (WSNs) have become directly accessible from the Internet with commonly used networking tools and applications (e.g., Telnet or SMTP). However, TCP has been shown to perform poorly in wireless networks, especially across multiple wireless hops. This paper examines TCP performance optimizations based on distributed caching and local retransmission strategies of intermediate nodes in a TCP connection, and proposes extended techniques to these strategies. The paper studies the impact of different radio duty-cycling MAC protocols on the end-to-end TCP performance when using the proposed TCP optimization strategies in an extensive experimental evaluation on a real-world sensor network testbed.
Resumo:
Reflected at any level of organization of the central nervous system, most of the processes ranging from ion channels to neuronal networks occur in a closed loop, where the input to the system depends on its output. In contrast, most in vitro preparations and experimental protocols operate autonomously, and do not depend on the output of the studied system. Thanks to the progress in digital signal processing and real-time computing, it is now possible to artificially close the loop and investigate biophysical processes and mechanisms under increased realism. In this contribution, we review some of the most relevant examples of a new trend in in vitro electrophysiology, ranging from the use of dynamic-clamp to multi-electrode distributed feedback stimulation. We are convinced these represents the beginning of new frontiers for the in vitro investigation of the brain, promising to open the still existing borders between theoretical and experimental approaches while taking advantage of cutting edge technologies.
Resumo:
We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).
Resumo:
In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.
Resumo:
Wireless Mesh Networks (WMN) have proven to be a key technology for increased network coverage of Internet infrastructures. The development process for new protocols and architectures in the area of WMN is typically split into evaluation by network simulation and testing of a prototype in a test-bed. Testing a prototype in a real test-bed is time-consuming and expensive. Irrepressible external interferences can occur which makes debugging difficult. Moreover, the test-bed usually supports only a limited number of test topologies. Finally, mobility tests are impractical. Therefore, we propose VirtualMesh as a new testing architecture which can be used before going to a real test-bed. It provides instruments to test the real communication software including the network stack inside a controlled environment. VirtualMesh is implemented by capturing real traffic through a virtual interface at the mesh nodes. The traffic is then redirected to the network simulator OMNeT++. In our experiments, VirtualMesh has proven to be scalable and introduces moderate delays. Therefore, it is suitable for predeployment testing of communication software for WMNs.
Resumo:
This paper studies the energy-efficiency and service characteristics of a recently developed energy-efficient MAC protocol for wireless sensor networks in simulation and on a real sensor hardware testbed. This opportunity is seized to illustrate how simulation models can be verified by cross-comparing simulation results with real-world experiment results. The paper demonstrates that by careful calibration of simulation model parameters, the inevitable gap between simulation models and real-world conditions can be reduced. It concludes with guidelines for a methodology for model calibration and validation of sensor network simulation models.
Resumo:
The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.
Resumo:
Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.
Resumo:
The development and evaluation of new algorithms and protocols for Wireless Multimedia Sensor Networks (WMSNs) are usually supported by means of a discrete event network simulator, where OMNeT++ is one of the most important ones. However, experiments involving multimedia transmission, video flows with different characteristics, genres, group of pictures lengths, and coding techniques must be evaluated based also on Quality of Experience (QoE) metrics to reflect the user's perception. Such experiments require the evaluation of video-related information, i.e., frame type, received/lost, delay, jitter, decoding errors, as well as inter and intra-frame dependency of received/distorted videos. However, existing OMNeT++ frameworks for WMSNs do not support video transmissions with QoE-awareness, neither a large set of mobility traces to enable evaluations under different multimedia/mobile situations. In this paper, we propose a Mobile MultiMedia Wireless Sensor Network OMNeT++ framework (M3WSN) to support transmission, control and evaluation of real video sequences in mobile WMSNs.
Resumo:
This paper is a summary of the main contribu- tions of the PhD thesis published in [1]. The main research contributions of the thesis are driven by the research question how to design simple, yet efficient and robust run-time adaptive resource allocation schemes within the commu- nication stack of Wireless Sensor Network (WSN) nodes. The thesis addresses several problem domains with con- tributions on different layers of the WSN communication stack. The main contributions can be summarized as follows: First, a a novel run-time adaptive MAC protocol is intro- duced, which stepwise allocates the power-hungry radio interface in an on-demand manner when the encountered traffic load requires it. Second, the thesis outlines a metho- dology for robust, reliable and accurate software-based energy-estimation, which is calculated at network run- time on the sensor node itself. Third, the thesis evaluates several Forward Error Correction (FEC) strategies to adap- tively allocate the correctional power of Error Correcting Codes (ECCs) to cope with timely and spatially variable bit error rates. Fourth, in the context of TCP-based communi- cations in WSNs, the thesis evaluates distributed caching and local retransmission strategies to overcome the perfor- mance degrading effects of packet corruption and trans- mission failures when transmitting data over multiple hops. The performance of all developed protocols are eval- uated on a self-developed real-world WSN testbed and achieve superior performance over selected existing ap- proaches, especially where traffic load and channel condi- tions are suspect to rapid variations over time.
Resumo:
Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.
Resumo:
Wireless Mesh Networks (WMNs) are increasingly deployed to enable thousands of users to share, create, and access live video streaming with different characteristics and content, such as video surveillance and football matches. In this context, there is a need for new mechanisms for assessing the quality level of videos because operators are seeking to control their delivery process and optimize their network resources, while increasing the user’s satisfaction. However, the development of in-service and non-intrusive Quality of Experience assessment schemes for real-time Internet videos with different complexity and motion levels, Group of Picture lengths, and characteristics, remains a significant challenge. To address this issue, this article proposes a non-intrusive parametric real-time video quality estimator, called MultiQoE that correlates wireless networks’ impairments, videos’ characteristics, and users’ perception into a predicted Mean Opinion Score. An instance of MultiQoE was implemented in WMNs and performance evaluation results demonstrate the efficiency and accuracy of MultiQoE in predicting the user’s perception of live video streaming services when compared to subjective, objective, and well-known parametric solutions.