10 resultados para Reactions of borane and cyanoborane with amines and phosphine
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To compare the haemostatic effect and tissue reactions of different agents and methods used for haemorrhage control in apical surgery.
Resumo:
The [4.5.5.5]fenestranes 2 and 3 with two different functionalities were prepared in seven steps with overall yields of 5% and 10%, respectively. For introduction of a bridgehead double bond the removal of the tertiary hydroxy group was investigated in the two stereoisomeric hydroxyketones 12 and 15. Whereas the dehydration readily occurred in 12, a ring opening reaction was observed for 15. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Purpose To update American Society of Clinical Oncology/American Society of Hematology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. Methods An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. Results The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. Recommendations For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels � 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration–approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations. This guideline was developed through a collaboration between the American Society of Clinical Oncology and the American Society of Hematology and has been published jointly by invitation and consent in both Journal of Clinical Oncology and Blood.
Resumo:
Purpose: To update American Society of Hematology/American Society of Clinical Oncology recommendations for use of erythropoiesis-stimulating agents (ESAs) in patients with cancer. Methods: An Update Committee reviewed data published between January 2007 and January 2010. MEDLINE and the Cochrane Library were searched. Results: The literature search yielded one new individual patient data analysis and four literature-based meta-analyses, two systematic reviews, and 13 publications reporting new results from randomized controlled trials not included in prior or new reviews. Recommendations: For patients undergoing myelosuppressive chemotherapy who have a hemoglobin (Hb) level less than 10 g/dL, the Update Committee recommends that clinicians discuss potential harms (eg, thromboembolism, shorter survival) and benefits (eg, decreased transfusions) of ESAs and compare these with potential harms (eg, serious infections, immune-mediated adverse reactions) and benefits (eg, rapid Hb improvement) of RBC transfusions. Individual preferences for assumed risk should contribute to shared decisions on managing chemotherapy-induced anemia. The Committee cautions against ESA use under other circumstances. If used, ESAs should be administered at the lowest dose possible and should increase Hb to the lowest concentration possible to avoid transfusions. Available evidence does not identify Hb levels 10 g/dL either as thresholds for initiating treatment or as targets for ESA therapy. Starting doses and dose modifications after response or nonresponse should follow US Food and Drug Administration-approved labeling. ESAs should be discontinued after 6 to 8 weeks in nonresponders. ESAs should be avoided in patients with cancer not receiving concurrent chemotherapy, except for those with lower risk myelodysplastic syndromes. Caution should be exercised when using ESAs with chemotherapeutic agents in diseases associated with increased risk of thromboembolic complications. Table 1 lists detailed recommendations.
Resumo:
Exposure to sulfonamides is associated with a high incidence of hypersensitivity reactions. Antigen-specific T cells are involved in the pathogenesis; however, the nature of the antigen interacting with specific T-cell receptors is not fully defined.
Resumo:
The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature. A mechanism for the charge separation involving an intermediate charge-separated state is proposed based on transient absorption spectroscopy.
Resumo:
Equine recurrent airway obstruction (RAO) is a chronic lower airway disease of the horse caused by hypersensitivity reactions to inhaled stable dust, including mould spores such as Aspergillus fumigatus. The goals of this study were to investigate whether total serum IgE levels and allergen-specific IgE and IgG subclasses are influenced by genetic factors and/or RAO and whether quantitative trait loci (QTL) could be identified for these parameters. The offspring of two RAO-affected sires (S1: n=56 and S2: n=65) were grouped by stallion and disease status, and total serum IgE levels and specific IgE, IgGa, IgGb and IgG(T) levels against recombinant Aspergillus fumigatus 7 (rAspf7) were measured by ELISA. A panel of 315 microsatellite markers covering the 31 equine autosomes were used to genotype the stallions and their offspring. A whole-genome scan using half-sib regression interval mapping was performed for each of the IgG and IgE subclasses. There was no significant effect of disease status or sire on total IgE levels, but there was a significant effect of gender and age. rAspf7-specific IgGa levels were significantly higher in RAO-affected than in healthy horses. The offspring of S1 had significantly higher rAspf7-specific IgGa and IgE levels than those of S2. Five QTLs were significant chromosome-wide (P<0.01). QTLs for rAspf7-specific IgGa and IgE were identified on ECA 1, for rAspf7-specific IgGa and IgGb on ECA 24 and for rAspf7 IgGa on ECA 26. These results provide evidence for effects of disease status and genetics on allergen-specific IgGa and IgE.
Resumo:
Physicians and scientists use a broad spectrum of terms to classify contrast media (CM)-induced adverse reactions. In particular, the designation of hypersensitivity reactions is quite varied. Consequently, comparisons of different papers dealing with this subject are difficult or even impossible. Moreover, general descriptions may lead to problems in understanding reactions in patients with a history of adverse CM-reactions, and in efficiently managing these patients. Therefore, the goal of this paper is to suggest an easy system to clearly classify these reactions. The proposed three-step systems (3SS) is built up as follows: step 1 exactly describes the clinical features, including their severity; step 2 categorizes the time point of the onset (immediate or nonimmediate); and step 3 generally classifies the reaction (hypersensitivity or nonhypersensitivity reaction). The 3SS may facilitate better understanding of the clinical manifestations of adverse CM reactions and may support the prevention of these reactions on the basis of personalized medicine approaches.