46 resultados para Reaction time
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The impact of interictal epileptic activity (IEA) on driving is a rarely investigated issue. We analyzed the impact of IEA on reaction time in a pilot study. Reactions to simple visual stimuli (light flash) in the Flash test or complex visual stimuli (obstacle on a road) in a modified car driving computer game, the Steer Clear, were measured during IEA bursts and unremarkable electroencephalography (EEG) periods. Individual epilepsy patients showed slower reaction times (RTs) during generalized IEA compared to RTs during unremarkable EEG periods. RT differences were approximately 300 ms (p < 0.001) in the Flash test and approximately 200 ms (p < 0.001) in the Steer Clear. Prior work suggested that RT differences >100 ms may become clinically relevant. This occurred in 40% of patients in the Flash test and in up to 50% in the Steer Clear. When RT were pooled, mean RT differences were 157 ms in the Flash test (p < 0.0001) and 116 ms in the Steer Clear (p < 0.0001). Generalized IEA of short duration seems to impair brain function, that is, the ability to react. The reaction-time EEG could be used routinely to assess driving ability.
Resumo:
Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.
Resumo:
The objective of this study is to determine the impact of expectation associated with placebo and caffeine ingestion. We used a three-armed, randomized, double-blind design. Two three-armed experiments varying instruction (true, false, control) investigated the role of expectations of changes in arousal (blood pressure, heart rate), subjective well-being, and reaction time (RT). In Experiment 1 (N = 45), decaffeinated coffee was administered, and expectations were produced in one group by making them believe they had ingested caffeinated coffee. In Experiment 2 (N = 45), caffeinated orange juice was given in both experimental groups, but only one was informed about the true content. In Experiment 1, a significant effect for subjective alertness was found in the placebo treatment compared to the control group. However, for RT and well-being no significant effects were found. In Experiment 2, no significant expectancy effects were found. Caffeine produced large effects for blood pressure in both treatments compared to the control group, but the effects were larger for the false information group. For subjective well-being (alertness, calmness), considerable but nonsignificant changes were found for correctly informed participants, indicating possible additivity of pharmacologic effect and expectations. The results tentatively indicate that placebo and expectancy effects primarily show through introspection.
Resumo:
By means of fixed-links modeling, the present study identified different processes of visual short-term memory (VSTM) functioning and investigated how these processes are related to intelligence. We conducted an experiment where the participants were presented with a color change detection task. Task complexity was manipulated through varying the number of presented stimuli (set size). We collected hit rate and reaction time (RT) as indicators for the amount of information retained in VSTM and speed of VSTM scanning, respectively. Due to the impurity of these measures, however, the variability in hit rate and RT was assumed to consist not only of genuine variance due to individual differences in VSTM retention and VSTM scanning but also of other, non-experimental portions of variance. Therefore, we identified two qualitatively different types of components for both hit rate and RT: (1) non-experimental components representing processes that remained constant irrespective of set size and (2) experimental components reflecting processes that increased as a function of set size. For RT, intelligence was negatively associated with the non-experimental components, but was unrelated to the experimental components assumed to represent variability in VSTM scanning speed. This finding indicates that individual differences in basic processing speed, rather than in speed of VSTM scanning, differentiates between high- and low-intelligent individuals. For hit rate, the experimental component constituting individual differences in VSTM retention was positively related to intelligence. The non-experimental components of hit rate, representing variability in basal processes, however, were not associated with intelligence. By decomposing VSTM functioning into non-experimental and experimental components, significant associations with intelligence were revealed that otherwise might have been obscured.
Resumo:
In the current study, we consider that optimal sprint start performance requires the self-control of responses. Therefore, start performance should depend on athletes' self-control strength. We assumed that momentary depletion of self-control strength (ego depletion) would either speed up or slow down the initiation of a sprint start, where an initiation that was sped up would carry the increased risk of a false start. Applying a mixed between- (depletion vs. nondepletion) and within- (before vs. after manipulation of depletion) subjects design, we tested the start reaction times of 37 sport students. We found that participants' start reaction times decelerated after finishing a depleting task, whereas it remained constant in the nondepletion condition. These results indicate that sprint start performance can be impaired by unrelated preceding actions that lower momentary self-control strength. We discuss practical implications in terms of optimizing sprint starts and related overall sprint performance.
Resumo:
Abstract Previous work highlighted the possibility that musical training has an influence on cognitive functioning. The suggested reason for this influence is the strong recruitment of attention, planning, and working memory functions during playing a musical instrument. The purpose of the present work was twofold, namely to evaluate the general relationship between pre-stimulus electrophysiological activity and cognition, and more specifically the influence of musical expertise on working memory functions. With this purpose in mind, we used covariance mapping analyses to evaluate whether pre-stimulus electroencephalographic activity is predictive for reaction time during a visual working memory task (Sternberg paradigm) in musicians and non-musicians. In line with our hypothesis, we replicated previous findings pointing to a general predictive value of pre-stimulus activity for working memory performance. Most importantly, we also provide first evidence for an influence of musical expertise on working memory performance that could distinctively be predicted by pre-stimulus spectral power. Our results open novel perspectives for better comprehending the vast influences of musical expertise on cognition.
Resumo:
The mental speed approach explains individual differences in intelligence by faster information processing in individuals with higher compared to lower intelligence - especially in elementary cognitive tasks (ECTs). One of the most examined ECTs is the Hick paradigm. The present study aimed to contrast reaction time (RT) and P3 latency in a Hick task as predictors of intelligence. Although both, RT and P3 latency, are commonly used as indicators of mental speed, it is also known that they measure different aspects of information processing. Participants were 113 female students. RT and P3 latency were measured while participants completed the Hick task with four levels of complexity. Intelligence was assessed with Cattell's Culture Fair Test. A RT factor and a P3 factor were extracted by employing a PCA across complexity levels. There was no significant correlation between the factors. Commonality analysis was used to determine the proportions of unique and shared variance in intelligence explained by the RT and P3 latency factors. RT and P3 latency explained 5.5% and 5% of unique variance in intelligence. However, the two speed factors did not explain a significant portion of shared variance. This result suggests that RT and P3 latency in the Hick paradigm are measuring different aspects of information processing that explain different parts of variance in intelligence.
Resumo:
Saccadic performance depends on the requirements of the current trial, but also may be influenced by other trials in the same experiment. This effect of trial context has been investigated most for saccadic error rate and reaction time but seldom for the positional accuracy of saccadic landing points. We investigated whether the direction of saccades towards one goal is affected by the location of a second goal used in other trials in the same experimental block. In our first experiment, landing points ('endpoints') of antisaccades but not prosaccades were shifted towards the location of the alternate goal. This spatial bias decreased with increasing angular separation between the current and alternative goals. In a second experiment, we explored whether expectancy about the goal location was responsible for the biasing of the saccadic endpoint. For this, we used a condition where the saccadic goal randomly changed from one trial to the next between locations on, above or below the horizontal meridian. We modulated the prior probability of the alternate-goal location by showing cues prior to stimulus onset. The results showed that expectation about the possible positions of the saccadic goal is sufficient to bias saccadic endpoints and can account for at least part of this phenomenon of 'alternate-goal bias'.
Resumo:
The aim of the present study was to investigate whether healthy first-degree relatives of schizophrenia patients show reduced sensitivity performance, higher intra-individual variability (IIV) in reaction time (RT), and a steeper decline in sensitivity over time in a sustained attention task. Healthy first-degree relatives of schizophrenia patients (n=23) and healthy control subjects (n=46) without a family history of schizophrenia performed a demanding version of the Rapid Visual Information Processing task (RVIP). RTs, hits, false alarms, and the sensitivity index A' were assessed. The relatives were significantly less sensitive, tended to have higher IIV in RT, but sustained the impaired level of sensitivity over time. Impaired performance on the RVIP is a possible endophenotype for schizophrenia. Higher IIV in RT, apparently caused by impaired context representations, might result in fluctuations in control and lead to more frequent attentional lapses.
Resumo:
Previous studies have shown both declining and stable semantic-memory abilities during healthy aging. There is consistent evidence that semantic processes involving controlled mechanisms weaken with age. In contrast, results of aging studies on automatic semantic retrieval are often inconsistent, probably due to methodological limitations and differences. The present study therefore examines age-related alterations in automatic semantic retrieval and memory structure with a novel combination of critical methodological factors, i.e., the selection of subjects, a well-designed paradigm, and electrophysiological methods that result in unambiguous signal markers. Healthy young and elderly participants performed lexical decisions on visually presented word/non-word pairs with a stimulus onset asynchrony (SOA) of 150 ms. Behavioral and electrophysiological data were measured, and the N400-LPC complex, an event-related potential component sensitive to lexical-semantic retrieval, was analyzed by power and topographic distribution of electrical brain activity. Both age groups exhibited semantic priming (SP) and concreteness effects in behavioral reaction time and the electrophysiological N400-LPC complex. Importantly, elderly subjects did not differ significantly from the young in their lexical decision and SP performances as well as in the N400-LPC SP effect. The only difference was an age-related delay measured in the N400-LPC microstate. This could be attributed to existing age effects in controlled functions, as further supported by the replicated age difference in word fluency. The present results add new behavioral and neurophysiological evidence to earlier findings, by showing that automatic semantic retrieval remains stable in global signal strength and topographic distribution during healthy aging.
Resumo:
Preliminary data have suggested that taurolidine may bear promising disinfectant properties for the therapy of bacterial infections. However, at present, the potential antibacterial effect of taurolidine on the supragingival plaque biofilm is unknown. To evaluate the antibacterial effect of taurolidine on the supragingival plaque biofilm using the vital fluorescence technique and to compare it with the effect of NaCl and chlorhexidine (CHX), 18 subjects had to refrain from all mechanical and chemical hygiene measures for 24 h. A voluminous supragingival plaque sample was taken from the buccal surfaces of the lower molars and wiped on an objective slide. The sample was then divided into three equal parts and mounted with one of the three test or control preparations (a) NaCl, (b) taurolidine 2% and (c) CHX 0.2%. After a reaction time of 2 min, the test solutions were sucked of. Subsequently, the plaque biofilm was stained with fluorescence dye and vitality of the plaque flora was evaluated under the fluorescence microscope (VF%). Plaque samples treated with NaCl showed a mean VF of 82.42 ± 6.04%. Taurolidine affected mean VF with 47.57 ± 16.60% significantly (p < 0.001, paired t test). The positive control CHX showed the lowest mean VF values (34.41 ± 14.79%; p < 0.001 compared to NaCl, p = 0.017 compared to taurolidine). Taurolidine possesses a significant antibacterial effect on the supragingival plaque biofilm which was, however, not as pronounced as that of CHX.
Resumo:
The deterioration of performance over time is characteristic for sustained attention tasks. This so-called "performance decrement" is measured by the increase of reaction time (RT) over time. Some behavioural and neurobiological mechanisms of this phenomenon are not yet fully understood. Behaviourally, we examined the increase of RT over time and the inter-individual differences of this performance decrement. On the neurophysiological level, we investigated the task-relevant brain areas where neural activity was modulated by RT and searched for brain areas involved in good performance (i.e. participants with no or moderate performance decrement) as compared to poor performance (i.e. participants with a steep performance decrement). For this purpose, 20 healthy, young subjects performed a carefully designed task for simple sustained attention, namely a low-demanding version of the Rapid Visual Information Processing task. We employed a rapid event-related functional magnetic resonance imaging (fMRI) design. The behavioural results showed a significant increase of RT over time in the whole group, and also revealed that some participants were not as prone to the performance decrement as others. The latter was statistically significant comparing good versus poor performers. Moreover, high BOLD-responses were linked to longer RTs in a task-relevant bilateral fronto-cingulate-insular-parietal network. Among these regions, good performance was associated with significantly higher RT-BOLD correlations in the pre-supplementary motor area (pre-SMA). We concluded that the task-relevant bilateral fronto-cingulate-insular-parietal network was a cognitive control network responsible for goal-directed attention. The pre-SMA in particular might be associated with the performance decrement insofar that good performers could sustain activity in this brain region in order to monitor performance declines and adjust behavioural output.
Resumo:
In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.