6 resultados para Reacções de Wittig
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A general strategy has been devised for the stereoselective synthesis of 12,13-cyclopropyl-epothilone B and side-chain-modified variants thereof, which relies on late stage introduction of the heterocycle through Wittig olefination of ketone 14. Formation of the macrocycle was achieved through RCM-based ring closure and introduction of the cyclopropane moiety involved a highly selective Charette cyclopropanation of allylic alcohol 7.
Resumo:
Tungsten isotope compositions of magmatic iron meteorites yield ages of differentiation that are within ±2 Ma of the formation of CAIs, with the exception of IVB irons that plot to systematically less radiogenic compositions yielding erroneously old ages. Secondary neutron capture due to galactic cosmic ray (GCR) irradiation is known to lower the ε182W of iron meteorites, adequate correction of which requires a measure of neutron dosage which has not been available, thus far. The W, Os and Pt isotope systematics of 12 of the 13 known IVB iron meteorites were determined by MC-ICP-MS (W, Os, Pt) and TIMS (Os). On the same dissolutions that yield precise ε182W, stable Os and Pt isotopes were determined as in situ neutron dosimeters for empirical correction of the ubiquitous cosmic-ray induced burn-out of 182W in iron meteorites. The W isotope data reveal a main cluster with ε182W of ∼−3.6, but a much larger range than observed in previous studies including irons (Weaver Mountains and Warburton Range) that show essentially no cosmogenic effect on their ε182W. The IVB data exhibits resolvable negative anomalies in ε189Os (−0.6ε) and complementary ε190Os anomalies (+0.4ε) in Tlacotepec due to neutron capture on 189Os which has approximately the same neutron capture cross section as 182W, and captures neutrons to produce 190Os. The least irradiated IVB iron, Warburton Range, has ε189Os and ε190Os identical to terrestrial values. Similarly, Pt isotopes, which are presented as ε192Pt, ε194Pt and ε196Pt range from +4.4ε to +53ε, +1.54ε to −0.32ε and +0.73ε to −0.20ε, respectively, also identify Tlacotepec and Dumont as the most GCR-damaged samples. In W–Os and W–Pt isotope space, the correlated isotope data back-project toward a 0-epsilon value of ε192Pt, ε189Os and ε190Os from which a pre-GCR irradiation ε182W of −3.42±0.09 (2σ) is derived. This pre-GCR irradiation ε182W is within uncertainty of the currently accepted CAI initial ε182W. The Pt and Os isotope correlations in the IVB irons are in good agreement with a nuclear model for spherical irons undergoing GCR spallation, although this model over-predicts the change of ε182W by ∼2×, indicating a need for better W neutron capture cross section determinations. A nucleosynthetic effect in ε184W in these irons of −0.14±0.08 is confirmed, consistent with the presence of Mo and Ru isotope anomalies in IVB irons. The lack of a non-GCR Os isotope anomaly in these irons requires more complex explanations for the production of W, Ru and Mo anomalies than nebular heterogeneity in the distribution of s-process to r-process nuclides.
Resumo:
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Resumo:
We describe the synthesis of (5 S )-5- C -butylthymidine ( 5a ), of the (5 S )-5- C -butyl- and the (5 S )-5- C -isopentyl derivatives 16a and 16b of 2-deoxy-5-methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin-5-al 1 , the alkyl chain at C(5) is introduced via Wittig chemistry to selectively yield the ( Z )-olefin derivatives 3a and 3b ( Scheme 2 ). The secondary OH function at C(5) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5 S )-configuration in high diastereoisomer purity (de=94%). The corresponding 2-deoxy-5-methylcytidine derivatives are obtained from the protected 5-alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields ( Scheme 3 ). Application of the same strategy to the purine nucleoside 2-deoxyadenine to obtain 5- C -butyl-2-deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride-based reducing agents ( Scheme 4 ).
Resumo:
The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, beta-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(alpha,n)25Mg neutron source for the solar system s-process.