24 resultados para Rare earth doped materials
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The theory on the intensities of 4f-4f transitions introduced by B.R. Judd and G.S. Ofelt in 1962 has become a center piece in rare-earth optical spectroscopy over the past five decades. Many fundamental studies have since explored the physical origins of the Judd–Ofelt theory and have proposed numerous extensions to the original model. A great number of studies have applied the Judd–Ofelt theory to a wide range of rare-earth doped materials, many of them with important applications in solid-state lasers, optical amplifiers, phosphors for displays and solid state lighting, upconversion and quantum-cutting materials, and fluorescent markers. This paper takes the view of the experimentalist who is interested in appreciating the basic concepts, implications, assumptions, and limitations of the Judd–Ofelt theory in order to properly apply it to practical problems. We first present the formalism for calculating the wavefunctions of 4f electronic states in a concise form and then show their application to the calculation and fitting of 4f-4f transition intensities. The potential, limitations and pitfalls of the theory are discussed, and a detailed case study of LaCl3:Er3+ is presented.
Resumo:
A scintillation crystal can include Ln(1-y)REyX3, wherein Ln represents a rare earth element, RE represents a different rare earth element, y has a value at 0-1, and X represents a halogen. In an embodiment, the scintillation crystal is doped with a Group 1 element, a Group 2 element, or a mixt. thereof, and the scintillation crystal is formed from a melt having a concn. of such elements or mixt. thereof of at least ∼0.02%. In another embodiment, the scintillation crystal can have unexpectedly improved proportionality and unexpectedly improved energy resoln. properties. In a further embodiment, a radiation detection app. can include the scintillation crystal, a photosensor, and an electronics device. Such a radiation detection app. can be useful in a variety of applications.
Resumo:
Mixtures of Rare Earth Elements (REE) have been used as animal growth-promoters on a large scale in China during the last 20 years. Numerous studies carried out in China claim it produces quite sensational growth-promoting effects in all categories of farm animals. To explore the question of whether REE's might prove suitable as a growth-promoter under western keeping conditions, feeding experiments were performed on pigs and poultry. The animals received a typical diet, supplemented with REE salts in concentrations between 75 and 300 mg/kg feed. Weight-gain, feed-intake, feed-conversion and (where applicable) laying parameters were observed. It was shown that in pigs receiving feed supplemented with REEs, an increase in daily weight gain of up to 19% and an improvement in feed-conversion of up to 11% can be achieved, whereas, for poultry, no positive effects on growth or productivity of the animals could be observed. Testing of important organs via Neutron Activating Analysis (NAA) showed a minute accumulation of REE, principally in liver and bones. Analysis of the poultry gut-flora, using selective media, showed that the main microorganism populations of the alimentary canal were unaffected by feed-supplementation with REE.
Resumo:
The thorium and rare-earth element (Th-REE) deposit at Morro do Ferro formed under supergene lateritic weathering conditions. The ore body consists of shallow NW-SE elongated argillaceous lenses that extend from the top of the hill downwards along its south-eastern slope. The deposit is capped by a network of magnetite layers which protected the underlying highly weathered, argillaceous host rock from excessive erosion. The surrounding country rocks comprise a sequence of subvolcanic phonolite intrusions that have been strongly altered by hydrothermal and supergene processes. From petrological, mineralogical and geochemical studies, and mass balance calculations, it is inferred that the highly weathered host rock was originally carbonatitic in composition, initially enriched in Th and REEs compared to the surrounding silicate rocks. The intrusion of the carbonatite caused fenitic alteration in the surrounding phonolites, consisting of early potassic alteration followed by a vein-type Th-REE mineralization with associated fluorite, carbonate, pyrite and zircon. Subsequent weathering has completely decomposed the carbonatite forming a residual supergene enrichment of Th and REEs. Initial weathering of the carbonatite has created a chemical environment that might have been conductive to carbonate and phosphate complexing of the REEs in groundwaters. This may have appreciably restricted the dissolution of primary REE phases. Strongly oxidic weathering has resulted in a fractionation between Ce and the other light rare earth elements (LREEs). Ce3+ is oxidized to Ce4+ and retained together with Th by secondary mineral formation (cerianite, thorianite), and by adsorption on poorly crystalline iron- and aluminium-hydroxides. In contrast, the trivalent LREEs are retained to a lesser degree and are thus more available for secondary mineral formation (Nd-lanthanite) and adsorption at greater depths down the weathering column. Seasonally controlled fluctuations of recharge waters into the weathering column may help to explain the observed repetition of Th-Ce enriched zones underlain by trivalent LREE enriched zones.
Resumo:
Various types of proton-irradiated lead–bismuth eutectic (LBE) samples from the MEGAPIE prototype spallation target were analyzed concerning their content of 148Gd, 173Lu, and 146Pm by use of α- and γ-spectrometry. A radiochemical separation procedure was developed to isolate the lanthanide fraction and to prepare thin samples for α-ray measurement. The results prove a substantial depletion of these three elements in bulk samples, whereas accumulation on the LBE/steel-interfaces was observed. The amount of material accumulated on surfaces was roughly estimated by relating the values measured on the sample surfaces to the total surface of the inner target walls. The amount of 148Gd, 173Lu, and 146Pm was then quantified by summing up the contributions from every sample type. The results show a reasonable agreement with theoretical predictions. The obtained results are of utmost importance for the evaluation of the performance of high-power spallation targets, especially concerning the residual nuclide production, the physicochemical behavior of the produced radionuclides during operation, and in terms of an intermediate or final disposal.
Resumo:
Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the View the MathML source3d94d1(J=0)→3d94p1(J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at View the MathML sourceλ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω2ω pumping.
Resumo:
The upconversion quantum yield (UCQY) is one of the most significant parameters for upconverter materials. A high UCQY is essential for a succesful integration of upconversion in many applications, such as harvesting of the solar radiation. However, little is known about which doping level of the rare-earth ions yields the highest UCQY in the different host lattices and what are the underlying causes. Here, we investigate which Er3+ doping yields the highest UCQY in the host lattices β-NaYF4 and Gd2O2S under 4I15/2 → 4I13/2 excitation. We show for both host lattices that the optimum Er3+ doping is not fixed and it actually decreases as the irradiance of the excitation increases. To find the optimum Er3+ doping for a given irradiance, we determined the peak position of the internal UCQY as a function of the average Er−Er distance. For this purpose, we used a fit on experimental data, where the average Er−Er distance was calculated from the Er3+ doping of the upconverter samples and the lattice parameters of the host materials. We observe optimum average Er−Er distances for the host lattices β-NaYF4 and Gd2O2S with differences <14% at the same irradiance levels, whereas the optimum Er3+ doping are around 2× higher for β-NaYF4 than for Gd2O2S. Estimations by extrapolation to higher irradiances indicate that the optimum average Er−Er distance converges to values around 0.88 and 0.83 nm for β-NaYF4 and Gd2O2S, respectively. Our findings point to a fundamental relationship and focusing on the average distance between the active rare-earth ions might be a very efficient way to optimize the doping of rare-earth ions with regard to the highest achievable UCQY.