21 resultados para Rapid auditory processing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Patients with schizophrenia are impaired in many aspects of auditory processing, but indirect evidence suggests that intensity perception is intact. However, because the extraction of meaning from dynamic intensity relies on structures that appear to be altered in schizophrenia, we hypothesized that the perception of auditory looming is impaired as well. Twenty inpatients with schizophrenia and 20 control participants, matched for age, gender, and education, gave intensity ratings of rising (looming) and falling intensity sounds with different mean intensities. Intensity change was overestimated in looming as compared with receding sounds in both groups. However, healthy individuals showed a stronger effect at higher mean intensity, in keeping with previous findings, while patients with schizophrenia lacked this modulation. We discuss how this might support the notion of a more general deficit in extracting emotional meaning from different sensory cues, including intensity and pitch.
Resumo:
Training can change the functional and structural organization of the brain, and animal models demonstrate that the hippocampus formation is particularly susceptible to training-related neuroplasticity. In humans, however, direct evidence for functional plasticity of the adult hippocampus induced by training is still missing. Here, we used musicians' brains as a model to test for plastic capabilities of the adult human hippocampus. By using functional magnetic resonance imaging optimized for the investigation of auditory processing, we examined brain responses induced by temporal novelty in otherwise isochronous sound patterns in musicians and musical laypersons, since the hippocampus has been suggested previously to be crucially involved in various forms of novelty detection. In the first cross-sectional experiment, we identified enhanced neural responses to temporal novelty in the anterior left hippocampus of professional musicians, pointing to expertise-related differences in hippocampal processing. In the second experiment, we evaluated neural responses to acoustic temporal novelty in a longitudinal approach to disentangle training-related changes from predispositional factors. For this purpose, we examined an independent sample of music academy students before and after two semesters of intensive aural skills training. After this training period, hippocampal responses to temporal novelty in sounds were enhanced in musical students, and statistical interaction analysis of brain activity changes over time suggests training rather than predisposition effects. Thus, our results provide direct evidence for functional changes of the adult hippocampus in humans related to musical training.
Resumo:
The aim of the present study was to investigate whether healthy first-degree relatives of schizophrenia patients show reduced sensitivity performance, higher intra-individual variability (IIV) in reaction time (RT), and a steeper decline in sensitivity over time in a sustained attention task. Healthy first-degree relatives of schizophrenia patients (n=23) and healthy control subjects (n=46) without a family history of schizophrenia performed a demanding version of the Rapid Visual Information Processing task (RVIP). RTs, hits, false alarms, and the sensitivity index A' were assessed. The relatives were significantly less sensitive, tended to have higher IIV in RT, but sustained the impaired level of sensitivity over time. Impaired performance on the RVIP is a possible endophenotype for schizophrenia. Higher IIV in RT, apparently caused by impaired context representations, might result in fluctuations in control and lead to more frequent attentional lapses.
Resumo:
Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.
Resumo:
Searching for the neural correlates of visuospatial processing using functional magnetic resonance imaging (fMRI) is usually done in an event-related framework of cognitive subtraction, applying a paradigm comprising visuospatial cognitive components and a corresponding control task. Besides methodological caveats of the cognitive subtraction approach, the standard general linear model with fixed hemodynamic response predictors bears the risk of being underspecified. It does not take into account the variability of the blood oxygen level-dependent signal response due to variable task demand and performance on the level of each single trial. This underspecification may result in reduced sensitivity regarding the identification of task-related brain regions. In a rapid event-related fMRI study, we used an extended general linear model including single-trial reaction-time-dependent hemodynamic response predictors for the analysis of an angle discrimination task. In addition to the already known regions in superior and inferior parietal lobule, mapping the reaction-time-dependent hemodynamic response predictor revealed a more specific network including task demand-dependent regions not being detectable using the cognitive subtraction method, such as bilateral caudate nucleus and insula, right inferior frontal gyrus and left precentral gyrus.
Resumo:
The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.
Resumo:
BACKGROUND: It is well known that there are specific peripheral activation patterns associated with the emotional valence of sounds. However, it is unclear how these effects adapt over time. The personality traits influencing these processes are also not clear. Anxiety disorders influence the autonomic activation related to emotional processing. However, personality anxiety traits have never been studied in the context of affective auditory stimuli. METHODS: Heart rate, skin conductance, zygomatic muscle activity and subjective rating of emotional valence and arousal were recorded in healthy subjects during the presentation of pleasant, unpleasant, and neutral sounds. Recordings were repeated 1 week later to examine possible time-dependent changes related to habituation and sensitization processes. RESULTS AND CONCLUSION: There was not a generalized habituation or sensitization process related to the repeated presentation of affective sounds, but rather, specific adaptation processes for each physiological measure. These observations are consistent with previous studies performed with affective pictures and simple tones. Thus, the measures of skin conductance activity showed the strongest changes over time, including habituation during the first presentation session and sensitization at the end of the second presentation session, whereas the facial electromyographic activity habituated only for the neutral stimuli and the heart rate did not habituate at all. Finally, we showed that the measure of personality trait anxiety influenced the orienting reaction to affective sounds, but not the adaptation processes related to the repeated presentation of these sounds.
Resumo:
Edges are crucial for the formation of coherent objects from sequential sensory inputs within a single modality. Moreover, temporally coincident boundaries of perceptual objects across different sensory modalities facilitate crossmodal integration. Here, we used functional magnetic resonance imaging in order to examine the neural basis of temporal edge detection across modalities. Onsets of sensory inputs are not only related to the detection of an edge but also to the processing of novel sensory inputs. Thus, we used transitions from input to rest (offsets) as convenient stimuli for studying the neural underpinnings of visual and acoustic edge detection per se. We found, besides modality-specific patterns, shared visual and auditory offset-related activity in the superior temporal sulcus and insula of the right hemisphere. Our data suggest that right hemispheric regions known to be involved in multisensory processing are crucial for detection of edges in the temporal domain across both visual and auditory modalities. This operation is likely to facilitate cross-modal object feature binding based on temporal coincidence. Hum Brain Mapp, 2008. (c) 2008 Wiley-Liss, Inc.
Resumo:
The precise role of the fusiform face area (FFA) in face processing remains controversial. In this study, we investigated to what degree FFA activation reflects additional functions beyond face perception. Seven volunteers underwent rapid event-related functional magnetic resonance imaging while they performed a face-encoding and a face-recognition task. During face encoding, activity in the FFA for individual faces predicted whether the individual face was subsequently remembered or forgotten. However, during face recognition, no difference in FFA activity between consciously remembered and forgotten faces was observed, but the activity of FFA differentiated if a face had been seen previously or not. This demonstrated a dissociation between overt recognition and unconscious discrimination of stimuli, suggesting that physiological processes of face recognition can take place, even if not all of its operations are made available to consciousness.