4 resultados para Rahul Sankritayan

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To evaluate the use of covered stent-grafts in the endovascular treatment (ET) of popliteal artery aneurysms (PAAs). MATERIALS AND METHODS: A retrospective analysis was conducted over a period of 52 months in 18 consecutive patients (17 men; mean age +/- SD, 70 years +/- 11) undergoing ET of PAAs with the Viabahn endograft in a single center. Patient symptoms, aneurysm characteristics, technical outcomes, complications, and follow-up were assessed. RESULTS: Aneurysm diameters ranged from 12 to 51 mm with a mean of 30 mm (+/-11). Thirteen aneurysms (72.2%) were partially thrombosed and 12 patients (66.6%) had symptoms of lower limb ischemia at presentation (11 chronic and one acute). The technical success rate was 94%. Intraprocedural emboli and endoleak occurred in one and two patients, respectively. Fourteen patients were available for follow-up after successful treatment, with a mean follow-up time of 15 months (range, 7-37 months). All stent-grafts were patent after 1 month, with no mortality or limb loss. The primary patency rate with complete exclusion of the aneurysm at 6 months was 86%. Pre- and postprocedural noninvasive arterial studies were available in 10 patients, demonstrating improvement of the ankle-brachial index from 0.96 +/- 0.41 to 1.17 +/- 0.18, respectively (P = .06). CONCLUSIONS: Endovascular stent-graft repair of PAAs is a feasible treatment option. However, further follow-up studies regarding the durability of results are required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With its invariant cell lineage, easy genetics and small genome, the nematode Caenorhabditis elegans has emerged as one of the prime models in developmental biology over the last 50 years. Surprisingly however, until a decade ago very little was known about nuclear organization in worms, even though it is an ideal model system to explore the link between nuclear organization and cell fate determination. Here, we review the latest findings that exploit the repertoire of genetic tools developed in worms, leading to the identification of important sequences and signals governing the changes in chromatin tridimensional architecture. We also highlight parallels and differences to other model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adjustment of X-linked gene expression to the X chromosome copy number (dosage compensation [DC]) has been widely studied as a model of chromosome-wide gene regulation. In Caenorhabditis elegans, DC is achieved by twofold down-regulation of gene expression from both Xs in hermaphrodites. We show that in males, the single X chromosome interacts with nuclear pore proteins, while in hermaphrodites, the DC complex (DCC) impairs this interaction and alters X localization. Our results put forward a structural model of DC in which X-specific sequences locate the X chromosome in transcriptionally active domains in males, while the DCC prevents this in hermaphrodites.