184 resultados para Radiocarbon dating

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dating lake sediments by accelerator mass spectrometry (AMS) 14C analysis of terrestrial plant macrofossils overcomes one of the main problems associated with dating bulk sediment samples, i.e., the presence of old organic matter. Even so, many AMS dates from arctic and boreal sites appear to misrepresent the age of the sediment. To understand the nature of these apparent dating anomalies better, we conducted a series of 14C dating experiments using samples from Alaskan and Siberian lake-sediment cores. First, to test whether our analytical procedures introduced a sample-mass bias, we obtained 14C dates for different-sized pieces of single woody macrofossils. In these sample-mass experiments, statistically equivalent ages were found for samples as small as 0.05 mg C. Secondly, to assess whether macrofossil type influenced dating results, we conducted sample-type experiments in which 14C dates were obtained for different macrofossil types sieved from the same depth in the sediment. We dated materials from multiple levels in sediment cores from Upper Capsule Lake (North Slope, northern Alaska) and Grizzly Lake (Copper River Basin, southern Alaska) and from single depths in other records from northern Alaska. In several of the experiments there were significant discrepancies between dates for different plant tissues, and in most cases wood and charcoal were older than other macrofossil types, usually by several hundred years. This pattern suggests that 14C dates for woody macrofossils may misrepresent the age of the sediment by centuries, perhaps because of their longer terrestrial residence time and the potential in-built age of longlived plants. This study identifies why some 14C dates appear to be inconsistent with the overall age-depth trend of a lake-sediment record, and it may guide the selection of 14C samples in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present studies of 9 modern (up to 400-yr-old) peat sections from Slovenia, Switzerland, Austria, Italy, and Finland. Precise radiocarbon dating of modern samples is possible due to the large bomb peak of atmospheric 14C concentration in 1963 and the following rapid decline in the 14C level. All the analyzed 14C profiles appeared concordant with the shape of the bomb peak of atmospheric 14C concentration, integrated over some time interval with a length specific to the peat section. In the peat layers covered by the bomb peak, calendar ages of individual peat samples could be determined almost immediately, with an accuracy of 23 yr. In the pre-bomb sections, the calendar ages of individual dated samples are determined in the form of multi-modal probability distributions of about 300 yr wide (about AD 16501950). However, simultaneous use of the post-bomb and pre-bomb 14C dates, and lithological information, enabled the rejection of most modes of probability distributions in the pre-bomb section. In effect, precise age-depth models of the post-bomb sections have been extended back in time, into the wiggly part of the 14C calibration curve.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The novel tabletop miniaturized radiocarbon dating system (MICADAS) at ETH Zurich features a hybrid Cs sputter negative ion source for the measurement of solid graphite and gaseous CO2 samples. The source produces stable currents of up to 6 mu A C- out of gaseous samples with an efficiency of 3-6%. A gas feeding system has been set up that enables constant dosing of CO2 into the Cs sputter ion source and ensures stable measuring conditions. The system is based on a syringe in which CO2 gas is mixed with He and then pressed continuously into the ion source at a constant flow rate. Minimized volumes allow feeding samples of 3-30 mu g carbon quantitatively into the ion source. In order to test the performance of the system, several standards and blanks have successfully been measured. The ratios of C-14/C-12 could be repeated within statistical errors to better than 1.0% and the C-13/C-12 ratios to better than 0.2%. The blank was < 1 pMC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite the important role of the Central Andes (15–30° S) for climate reconstruction, knowledge about the Quaternary glaciation is very limited due to the scarcity of organic material for radiocarbon dating. We applied 10Be surface exposure dating (SED) on 22 boulders from moraines in the Cordon de Doña Rosa, Northern/Central Chile (~31° S). The results show that several glacial advances in the southern Central Andes occurred during the Late Glacial between ~14.7±1.5 and 11.6±1.2 ka. A much more extensive glaciation is dated to ~32±3 ka, predating the temperature minimum of the global LGM (Last Glacial Maximum: ~20 ka). Reviewing these results in the paleoclimatic context, we conclude that the Late Glacial advances were most likely caused by an intensification of the tropical circulation and a corresponding increase in summer precipitation. High-latitude temperatures minima, e.g. the Younger Dryas (YD) and the Antarctic Cold Reversal (ACR) may have triggered individual advances, but current systematic exposure age uncertainties limit precise correlations. The absence of LGM moraines indicates that moisture advection was too limited to allow significant glacial advances at ~20 ka. The tropical circulation was less intensive despite the maximum in austral summer insolation. Winter precipitation was apparently also insufficient, although pollen and marine studies indicate a northward shift of the westerlies at that time. The dominant pre-LGM glacial advances in Northern/Central Chile at ~32 ka required lower temperatures and increased precipitation than today. We conclude that the westerlies were more intense and/or shifted equatorward, possibly due to increased snow and ice cover at higher southern latitudes coinciding with a minimum of insolation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Establishing precise age-depth relationships of high-alpine ice cores is essential in order to deduce conclusive paleoclimatic information from these archives. Radiocarbon dating of carbonaceous aerosol particles incorporated in such glaciers is a promising tool to gain absolute ages, especially from the deepest parts where conventional methods are commonly inapplicable. In this study, we present a new validation for a published C-14 dating method for ice cores. Previously C-14-dated horizons of organic material from the Juvfonne ice patch in central southern Norway (61.676 degrees N, 8.354 degrees E) were used as reference dates for adjacent ice layers, which were C-14 dated based on their particulate organic carbon (POC) fraction. Multiple measurements were carried out on 3 sampling locations within the ice patch featuring modern to multimillennial ice. The ages obtained from the analyzed samples were in agreement with the given age estimates. In addition to previous validation work, this independent verification gives further confidence that the investigated method provides the actual age of the ice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The northern section of the Bohemian Cretaceous Basin has been the site of intensive U exploitation with harmful impacts on groundwater quality. The understanding of groundwater flow and age distribution is crucial for the prediction of the future dispersion and impact of the contamination. State of the art tracer methods (3H, 3He, 4He, 85Kr, 39Ar and 14C) were, therefore, used to obtain insights to ageing and mixing processes of groundwater along a north–south flow line in the centre of the two most important aquifers of Cenomanian and middle Turonian age. Dating of groundwater is particularly complex in this area as: (i) groundwater in the Cenomanian aquifer is locally affected by fluxes of geogenic and biogenic gases (e.g. CO2, CH4, He) and by fossil brines in basement rocks rich in Cl and SO4; (ii) a thick unsaturated zone overlays the Turonian aquifer; (iii) a periglacial climate and permafrost conditions prevailed during the Last Glacial Maximum (LGM), and iv) the wells are mostly screened over large depth intervals. Large disagreements in 85Kr and 3H/3He ages indicate that processes other than ageing have affected the tracer data in the Turonian aquifer. Mixing with older waters (>50 a) was confirmed by 39Ar activities. An inverse modelling approach, which included time lags for tracer transport throughout the unsaturated zone and degassing of 3He, was used to estimate the age of groundwater. Best fits between model and field results were obtained for mean residence times varying from modern up to a few hundred years. The presence of modern water in this aquifer is correlated with the occurrence of elevated pollution (e.g. nitrates). An increase of reactive geochemical indicators (e.g. Na) and radiogenic 4He, and a decrease in 14C along the flow direction confirmed groundwater ageing in the deeper confined Cenomanian aquifer. Radiocarbon ages varied from a few hundred years to more than 20 ka. Initial 14C activity for radiocarbon dating was calibrated by means of 39Ar measurements. The 14C age of a sample recharged during the LGM was further confirmed by depleted stable isotope signatures and near freezing point noble gas temperature. Radiogenic 4He accumulated in groundwater with concentrations increasing linearly with 14C ages. This enabled the use of 4He to validate the dating range of 14C and extend it to other parts of this aquifer. In the proximity of faults, 39Ar in excess of modern concentrations and 14C dead CO2 sources, elevated 3He/4He ratios and volcanic activity in Oligocene to Quaternary demonstrate the influence of gas of deeper origin and impeded the application of 4He, 39Ar and 14C for groundwater dating.