45 resultados para Radioactive substances in soils.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the effects of soil properties and climate on concentrations of parent and oxygenated polycyclic aromatic compounds (PAHs and OPAHs) and azaarenes (AZAs) in topsoil and subsoil at 20 sites along a 2100-km north (N)–south (S) transect in Argentina. The concentrations of Σ29PAHs, Σ15OPAHs and Σ4AZAs ranged 2.4–38 ng g− 1, 0.05–124 ng g− 1 and not detected to 0.97 ng g− 1, respectively. With decreasing anthropogenic influence from N to S, low molecular weight PAHs increasingly dominated. The octanol–water partitioning coefficients correlated significantly with the subsoil to topsoil concentration ratios of most compounds suggesting leaching as the main transport process. Organic C concentrations correlated significantly with those of many compounds typical for atmosphere–soil partitioning. Lighter OPAHs were mainly detected in the S suggesting biological sources and heavier OPAHs in the N suggesting a closer association with parent-PAHs. Decreasing alkyl-naphthalene/naphthalene and 9,10-anthraquinone (9,10-ANQ)/anthracene ratios from N to S indicated that 9,10-ANQ might have originated from low-temperature combustion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soils on four lithologies (basaltic conglomerates, Bohio; Andesite; volcanoclastic sediments with basaltic agglomerates, Caimito volcanic; foraminiferal limestone, Caimito marine) on Barro Colorado Island (BCI) have high exchangeable Ca concentrations and cation-exchange capacities (CEC) compared to other tropical soils on similar parent material. In the 0–10 cm layer of 24 mineral soils, pH values ranged from 5.7 (Caimito volcanic and Andesite) to 6.5 (Caimito marine), concentrations of exchangeable Ca from 134 mmolc kg− 1 (Caimito volcanic) to 585 mmolc kg− 1 (Caimito marine), and cation exchange capacities from 317 mmolc kg− 1 (Caimito volcanic) to 933 mmolc kg− 1 (Caimito marine). X-ray diffractometry of the fraction < 2 μm revealed that smectites dominated the clay mineral assemblage in soil except on Caimito volcanic, where kaolinite was the dominant clay mineral. Exchangeable Ca concentrations decreased with increasing soil depth except on Caimito marine. The weathering indices Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Weathering Index of Parker (WIP) determined for five soils on all geological formations, suggested that in contrast to expectation the topsoil (0–10 cm) appeared to be the least and the subsoil (50–70 cm) and saprolite (isomorphically weathered rock in the soil matrix) the most weathered. Additionally, the weathering indices indicated depletion of base cations and enrichment of Al-(hydr)oxides throughout the soil profile. Tree species did not have an effect on soil properties. Impeded leaching and the related occurrence of overland flow seem to be important in determining clay mineralogy. Our results suggest that (i) edaphic conditions favor the formation of smectites on most lithologies resulting in high CEC and thus high retention capacity for Ca and (ii) that there is an external source such as dust or sea spray deposition supplying Ca to the soils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND New psychoactive substances (NPS) have become increasingly prevalent and are sold in internet shops as 'bath salts' or 'research chemicals' and comprehensive bioanalytical methods are needed for their detection. METHODOLOGY We developed and validated a method using LC and MS/MS to quantify 56 NPS in blood and urine, including amphetamine derivatives, 2C compounds, aminoindanes, cathinones, piperazines, tryptamines, dissociatives and others. Instrumentation included a Synergi Polar-RP column (Phenomenex) and a 3200 QTrap mass spectrometer (AB Sciex). Run time was 20 min. CONCLUSION A novel method is presented for the unambiguous identification and quantification of 56 NPS in blood and urine samples in clinical and forensic cases, e.g., intoxications or driving under the influence of drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozone-depleting substances emitted through human activitiescause large-scale damage to the stratospheric ozone layer, and influence global climate. Consequently, the production of many of these substances has been phased out; prominent examples are the chlorofluorocarbons (CFCs), and their intermediate replacements, the hydrochlorofluorocarbons (HCFCs). So far, seven types of CFC and six types of HCFC have been shown to contribute to stratospheric ozone destruction 1,2. Here, we report the detection and quantification of a further three CFCs and one HCFC. We analysed the composition of unpolluted air samples collected in Tasmania between 1978 and 2012, and extracted from deep firn snow in Greenland in 2008, using gas chromatography with mass spectrometric detection. Using the firn data, we show that all four compounds started to emerge in the atmosphere in the 1960s. Two of the compounds continue to accumulate in the atmosphere. We estimate that, before 2012, emissions of all four compounds combined amounted to more than 74,000 tonnes. This is small compared with peak emissions of other CFCs in the 1980s of more than one million tonnes each year 2. However, the reported emissions are clearly contrary to the intentions behind the Montreal Protocol, and raise questions about the sources of these gases.