7 resultados para Radio school station
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Radio-frequency electromagnetic fields (RF EMF) of mobile communication systems are widespread in the living environment, yet their effects on humans are uncertain despite a growing body of literature. OBJECTIVES: We investigated the influence of a Universal Mobile Telecommunications System (UMTS) base station-like signal on well-being and cognitive performance in subjects with and without self-reported sensitivity to RF EMF. METHODS: We performed a controlled exposure experiment (45 min at an electric field strength of 0, 1, or 10 V/m, incident with a polarization of 45 degrees from the left back side of the subject, weekly intervals) in a randomized, double-blind crossover design. A total of 117 healthy subjects (33 self-reported sensitive, 84 nonsensitive subjects) participated in the study. We assessed well-being, perceived field strength, and cognitive performance with questionnaires and cognitive tasks and conducted statistical analyses using linear mixed models. Organ-specific and brain tissue-specific dosimetry including uncertainty and variation analysis was performed. RESULTS: In both groups, well-being and perceived field strength were not associated with actual exposure levels. We observed no consistent condition-induced changes in cognitive performance except for two marginal effects. At 10 V/m we observed a slight effect on speed in one of six tasks in the sensitive subjects and an effect on accuracy in another task in nonsensitive subjects. Both effects disappeared after multiple end point adjustment. CONCLUSIONS: In contrast to a recent Dutch study, we could not confirm a short-term effect of UMTS base station-like exposure on well-being. The reported effects on brain functioning were marginal and may have occurred by chance. Peak spatial absorption in brain tissue was considerably smaller than during use of a mobile phone. No conclusions can be drawn regarding short-term effects of cell phone exposure or the effects of long-term base station-like exposure on human health.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.
Resumo:
The understanding of the continental carbon budget is essential to predict future climate change. In order to quantify CO₂ and CH₄ fluxes at the regional scale, a measurement system was installed at the former radio tower in Beromünster as part of the Swiss greenhouse gas monitoring network (CarboCount CH). We have been measuring the mixing ratios of CO₂, CH₄ and CO on this tower with sample inlets at 12.5, 44.6, 71.5, 131.6 and 212.5 m above ground level using a cavity ring down spectroscopy (CRDS) analyzer. The first 2-year (December 2012–December 2014) continuous atmospheric record was analyzed for seasonal and diurnal variations and interspecies correlations. In addition, storage fluxes were calculated from the hourly profiles along the tower. The atmospheric growth rates from 2013 to 2014 determined from this 2-year data set were 1.78 ppm yr⁻¹, 9.66 ppb yr⁻¹ and and -1.27 ppb yr⁻¹ for CO₂, CH₄ and CO, respectively. After detrending, clear seasonal cycles were detected for CO₂ and CO, whereas CH₄ showed a stable baseline suggesting a net balance between sources and sinks over the course of the year. CO and CO₂ were strongly correlated (r² > 0.75) in winter (DJF), but almost uncorrelated in summer. In winter, anthropogenic emissions dominate the biospheric CO₂ fluxes and the variations in mixing ratios are large due to reduced vertical mixing. The diurnal variations of all species showed distinct cycles in spring and summer, with the lowest sampling level showing the most pronounced diurnal amplitudes. The storage flux estimates exhibited reasonable diurnal shapes for CO₂, but underestimated the strength of the surface sinks during daytime. This seems plausible, keeping in mind that we were only able to calculate the storage fluxes along the profile of the tower but not the flux into or out of this profile, since no Eddy covariance flux measurements were taken at the top of the tower.