5 resultados para Radical transfer
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The conversion of alkylboranes to the corresponding alkanes is classically performed via protonolysis of alkylboranes. This simple reaction requires the use of severe reaction conditions, that is, treatment with a carboxylic acid at high temperature (>150 degrees C). We report here a mild radical procedure for the transformation of organoboranes to alkalies. 4-tert-Butylcatechol, a well-established radical inhibitor and antioxidant, is acting as a source of hydrogen atoms. An efficient chain reaction is observed due to the exceptional reactivity of phenoxyl radicals toward alkylboranes. The reaction has been applied to a wide range of organoboron derivatives such as B-alkylcatecholboranes, trialkylboranes, pinacolboronates, and alkylboronic acids. Furthermore, the so far elusive rate constants for the hydrogen transfer between secondary alkyl radical and catechol derivatives have been experimentally determined. Interestingly, they are less than 1 order of magnitude slower than that of tin hydride at 80 degrees C, making catechols particularly attractive for a wide range of transformations involving C-C bond formation.
Resumo:
A tetrathiafulvalene donor has been annulated to the bay region of perylenediimide through a 1H-benzo-[d]pyrrolo[1,2-a]imidazol-1-one spacer affording an extended pi-conjugated molecular dyad (TTF-PDI). To gain insight into its ground- and excited-state electronic properties, the reference compound Ph-PDI has been prepared via a direct Schiff-base condensation of N,N'-bis(1-octylnonyl) benzoperylene-1',2':3,4:9,10-hexacarboxylic-1',2'-anhydride-3,4:9,10-bis (imide) with benzene-1,2-diamine. Both the experimental and the computational (DFT) results indicate that TTF-PDI exhibits significant intramolecular electronic interactions giving rise to an efficient photoinduced charge-separation process. Free-energy calculations verify that the process from TTF to the singlet-excited state of PDI is exothermic in both polar and nonpolar solvents. Fast adiabatic electron-transfer processes of a compactly fused, pi-conjugated TTF-PDI dyad in benzonitrile, 2-methyltetrahydrofuran, anisole and toluene were observed by femtosecond transient absorption spectral measurements. The lifetimes of radical-ion pairs slightly increase with decreasing the solvent polarities, suggesting that the charge-recombination occurs in the Marcus inverted region. By utilizing the nanosecond transient absorption technique, the intermolecular electron-transfer process in a mixture of has been observed via the triplet excited PDI for the first time.