2 resultados para Radial Focus visualization

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few years, archaeology has experienced a rapid development in geophysical prospection and remote sensing techniques. At the same time, the focus of archaeological research has shifted to landscape evelopment and human interaction. To impart the results, new methods and techniques are necessary. Virtual globes such as Google Earth offer fascinating methods of giving interested amateurs the possibility to interactively explore ancient cities and landscapes. Thanks to the increasing usage of GIS in cultural heritage, the implementation of interactive three dimensional learning opportunities becomes less and less tedious, but the non-linear narrative story telling medium demands for a special adaption of the content. This paper summarizes the experience gained during the realization of the Virtual Cilicia Project and outlines the future potential of virtual globes in the field of cultural heritage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented -space spoiled gradient echo sequence with a temporal resolution of 13.8ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.