5 resultados para Race time

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE The ironman (IM) triathlon is a popular ultraendurance competition, consisting of 3.8 km of swimming, 180.2 km of cycling, and 42.2 km of running. The aim of this study was to investigate the predictors of IM race time, comparing echocardiographic findings, anthropometric measures, and training characteristics. METHODS Amateur IM athletes (ATHL) participating in the Zurich IM race in 2010 were included. Participants were examined the day before the race by a comprehensive echocardiographic examination. Moreover, anthropometric measurements were obtained the same day. During the 3 months before the race, each IM-ATHL maintained a detailed training diary. Recorded data were related to total IM race time. RESULTS Thirty-eight IM finishers (mean ± SD age = 38 ± 9 yr, 32 men [84%]) were evaluated. Total race time was 684 ± 89 min (mean ± SD). For right ventricular fractional area change (45% ± 7%, Spearman ρ = -0.33, P = 0.05), a weak correlation with race time was observed. Race performance exhibited stronger associations with percent body fat (15.2 ± 5.6%, ρ = 0.56, P = 0.001), speed in running training (11.7 ± 1.2 km · h(-1), ρ = -0.52, P = 0.002), and left ventricular myocardial mass index (98 ± 24 g · m(-2), ρ = -0.42, P = 0.009). The strongest association was found between race time and right ventricular end-diastolic area (22 ± 4 cm2, ρ = -0.64, P < 0.0001). In multivariate analysis, right ventricular end-diastolic area (β = -16.7, 95% confidence interval = -27.3 to -6.1, P = 0.003) and percent body fat (β = 6.8, 95% confidence interval = 1.1-12.6, P = 0.02) were independently predictive of IM race time. CONCLUSIONS In amateur IM-ATHL, RV end-diastolic area and percent body fat were independently related to race performance. RV end-diastolic area was the strongest predictor of race time. The role of the RV in endurance exercise may thus be more important than previously thought and needs to be further studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Veteran endurance athletes have an increased risk of developing atrial fibrillation (AF), with a striking male predominance. We hypothesized that male athletes were more prone to atrial and ventricular remodeling and investigated the signal-averaged P wave and factors that promote the occurrence of AF. Nonelite athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Of the 873 marathon and nonmarathon runners who were willing to participate, 68 female and 70 male athletes were randomly selected. The runners with cardiovascular disease or elevated blood pressure (>140/90 mm Hg) were excluded. Thus, 121 athletes were entered into the final analysis. Their mean age was 42 ± 7 years. No gender differences were found for age, lifetime training hours, or race time. The male athletes had a significantly longer signal-averaged P-wave duration (136 ± 12 vs 122 ± 10 ms; p <0.001). The left atrial volume was larger in the male athletes (56 ± 13 vs 49 ± 10 ml; p = 0.001), while left atrial volume index showed no differences (29 ± 7 vs 30 ± 6 ml/m²; p = 0.332). In male athletes, the left ventricular mass index (107 ± 17 vs 86 ± 16 g/m²; p <0.001) and relative wall thickness (0.44 ± 0.06 vs 0.41 ± 0.07; p = 0.004) were greater. No differences were found in the left ventricular ejection fraction (63 ± 4% vs 66 ± 6%; p = 0.112) and mitral annular tissue Doppler e' velocity (10.9 ± 1.5 vs 10.6 ± 1.5 cm/s; p = 0.187). However, the tissue Doppler a' velocity was higher (8.7 ± 1.2 vs 7.6 ± 1.3 cm/s; p < 0.001) in the male athletes. Male athletes had a higher systolic blood pressure at rest (123 ± 9 vs 110 ± 11 mm Hg; p < 0.001) and at peak exercise (180 ± 15 vs 169 ± 19 mm Hg; p = 0.001). In the frequency domain analysis of heart rate variability, the sympatho-vagal balance, represented by the low/high-frequency power ratio, was significantly greater in male athletes (5.8 ± 2.8 vs 3.9 ± 1.9; p < 0.001). Four athletes (3.3%) had at least one documented episode of paroxysmal AF, all were men (p = 0.042). In conclusion, for a comparable amount of training and performance, male athletes showed a more pronounced atrial remodeling, a concentric type of ventricular remodeling, and an altered diastolic function. A higher blood pressure at rest and during exercise and a higher sympathetic tone might be causal. The altered left atrial substrate might facilitate the occurrence of AF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endurance athletes have an increased risk of atrial fibrillation. We performed a longitudinal study on elite runners of the 2010 Jungfrau Marathon, a Swiss mountain marathon, to determine acute effects of long-distance running on the atrial myocardium. Ten healthy male athletes were included and examined 9 to 1 week prior to the race, immediately after, and 1, 5, and 8 days after the race. Mean age was 34.9 ± 4.2 years, and maximum oxygen consumption was 66.8 ± 5.8 mL/kg*min. Mean race time was 243.9 ± 17.7 min. Electrocardiographic-determined signal-averaged P-wave duration (SAPWD) increased significantly after the race and returned to baseline levels during follow-up (128.7 ± 10.9 vs. 137.6 ± 9.8 vs. 131.5 ± 8.6 ms; P < 0.001). Left and right atrial volumes showed no significant differences over time, and there were no correlations of atrial volumes and SAPWD. Prolongation of the SAPWD was accompanied by a transient increase in levels of high-sensitivity C-reactive protein, proinflammatory cytokines, total leucocytes, neutrophil granulocytes, pro atrial natriuretic peptide and high-sensitivity troponin. In conclusion, marathon running was associated with a transient conduction delay in the atria, acute inflammation and increased atrial wall tension. This may reflect exercise-induced atrial myocardial edema and may contribute to atrial remodeling over time, generating a substrate for atrial arrhythmias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The risk of sudden death is increased in athletes with a male predominance. Regular physical activity increases vagal tone, and may protect against exercise-induced ventricular arrhythmias. We investigated training-related modulations of the autonomic nervous system in female and male endurance athletes. Runners of a 10-mile race were invited. Of 873 applicants, 68 female and 70 male athletes were randomly selected and stratified according to their average weekly training hours in a low (≤4 h) and high (>4 h) volume training group. Analysis of heart rate variability was performed over 24 h. Spectral components (high frequency [HF] and low frequency [LF] power in normalized units) were analyzed for hourly 5 min segments and averaged for day- and nighttime. One hundred and fourteen athletes (50 % female, mean age 42 ± 7 years) were included. No significant gender difference was observed for training volume and 10-mile race time. Over the 24-h period, female athletes exhibited a higher HF and lower LF power for each hourly time-point. Female gender and endurance training hours were independent predictors of a higher HF and lower LF power. In female athletes, higher training hours were associated with a higher HF and lower LF power during nighttime. In male athletes, the same was true during daytime. In conclusion, female and male athletes showed a different circadian pattern of the training-related increase in markers of vagal tone. For a comparable amount of training volume, female athletes maintained their higher markers of vagal tone, possibly indicating a superior protection against exercise-induced ventricular arrhythmias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: Extensive endurance training and arterial hypertension are established risk factors for atrial fibrillation. We aimed to assess the proportion of masked hypertension in endurance athletes and the impact on cardiac remodeling, mechanics, and supraventricular tachycardias (SVT). METHODS: Male participants of a 10-mile race were recruited and included if office blood pressure was normal (<140/90 mmHg). Athletes were stratified into a masked hypertension and normotension group by ambulatory blood pressure. Primary endpoint was diastolic function, expressed as peak early diastolic mitral annulus velocity (E'). Left ventricular global strain, left ventricular mass/volume ratio, left atrial volume index, signal-averaged P-wave duration (SAPWD), and SVT during 24-h Holter monitoring were recorded. RESULTS: From 108 runners recruited, 87 were included in the final analysis. Thirty-three (38%) had masked hypertension. The mean age was 42 +/- 8 years. Groups did not differ with respect to age, body composition, cumulative training hours, and 10-mile race time. Athletes with masked hypertension had a lower E' and a higher left ventricular mass/volume ratio. Left ventricular global strain, left atrial volume index, SAPWD, and SVT showed no significant differences between the groups. In multiple linear regression analysis, masked hypertension was independently associated with E' (beta = -0.270, P = 0.004) and left ventricular mass/volume ratio (beta = 0.206, P = 0.049). Cumulative training hours was the only independent predictor for left atrial volume index (beta = 0.474, P < 0.001) and SAPWD (beta = 0.481, P < 0.001). CONCLUSION: In our study, a relevant proportion of middle-aged athletes had masked hypertension, associated with a lower diastolic function and a higher left ventricular mass/volume ratio, but unrelated to left ventricular systolic function, atrial remodeling, or SVT.