14 resultados para ROOTING AND CLONAL FORESTRY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.
Resumo:
The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.
Resumo:
OBJECTIVES: The aim of this study was to determine the phenotypic and genotypic resistance profiles of methicillin-resistant Staphylococcus pseudintermedius (MRSP) and to examine the clonal distribution in Europe and North America. METHODS: A total of 103 MRSP isolates from dogs isolated from several countries in Europe, the USA and Canada were characterized. Isolates were identified by PCR-restriction fragment length polymorphism (RFLP), antimicrobial susceptibility was determined by broth dilution or gradient diffusion, and antimicrobial resistance genes were detected using a microarray. Genetic diversity was assessed by multilocus sequence typing (MLST), PFGE and spa typing. Staphylococcal cassette chromosome mec (SCCmec) elements were characterized by multiplex PCR. RESULTS: Thirteen different sequence types (STs), 18 PFGE types and 8 spa types were detected. The hybrid SCCmec element II-III described in a MRSP isolate was present in 75 (72.8%) isolates. The remaining isolates either had SCCmec type III (n=2), IV (n=6), V (n=14) or VII-241 (n=4) or were non-typeable (n=2). The most common genotypes were ST71(MLST)-J(PFGE)-t02(spa)-II-III(SCCmec) (56.3%) and ST68-C-t06-V (12.6%). In addition to mecA-mediated beta-lactam resistance, isolates showed resistance to trimethoprim [dfr(G)] (90.3%), gentamicin/kanamycin [aac(6')-Ie-aph(2')-Ia] (88.3%), kanamycin [aph(3')-III] (90.3%), streptomycin [ant(6')-Ia] (90.3%), streptothricin (sat4) (90.3%), macrolides and/or lincosamides [erm(B), lnu(A)] (89.3%), fluoroquinolones (87.4%), tetracycline [tet(M) and/or tet(K)] (69.9%), chloramphenicol (cat(pC221)) (57.3%) and rifampicin (1.9%). CONCLUSIONS: Two major clonal MRSP lineages have disseminated in Europe (ST71-J-t02-II-III) and North America (ST68-C-t06-V). Regardless of their geographical or clonal origin, the isolates displayed resistance to the major classes of antibiotics used in veterinary medicine and thus infections caused by MRSP isolates represent a serious therapeutic challenge.
Resumo:
Inquilinus limosus is a novel Gram-negative bacterium of the subdivision alpha-Proteobacteria recently found in the airways of patients with cystic fibrosis (CF). Here, the authors report on the clinical courses of six CF patients colonized with I. limosus. Five patients suffered from either an acute respiratory exacerbation or a progressive loss of pulmonary function, whereas one patient was in a stable clinical situation. This study focused on two aims: (i) the clonal analysis of I. limosus isolates by random amplified polymorphic DNA (RAPD)-PCR, and (ii) the clarification of whether the presence of I. limosus in the respiratory tract is associated with a specific serum antibody response. Serum IgG was detected by immunoblotting using I. limosus whole-cell-lysate proteins as antigens. Sera from healthy blood donors (n=10) and from CF patients colonized with Pseudomonas aeruginosa (n=10) were found to be immunoblot negative. All six Inquilinus-positive patients raised serum IgG antibodies against various I. limosus antigens. Surprisingly, in one patient, a specific I. limosus serum antibody response was already detected 1 year prior to Inquilinus-positive sputum cultures. Two prominent antigens were characterized by MALDI-MS: a 23 kDa protein revealed homology to the outer membrane lipoprotein OmlA of Actinobacillus pleuropneumoniae, and an 18 kDa protein to a protein-tyrosine phosphatase of Burkholderia cepacia. In conclusion, detection of I. limosus is accompanied by a specific serum antibody response and may reflect the infectious/pathogenic potential of I. limosus. Moreover, IgG immunoblotting may be useful to detect early infection with I. limosus and may support the selective cultivation of this novel emerging pathogen.
Resumo:
Aims Phenotypic optimality models neglect genetics. However, especially when heterozygous genotypes ire fittest, evolving allele, genotype and phenotype frequencies may not correspond to predicted optima. This was not previously addressed for organisms with complex life histories. Methods Therefore, we modelled the evolution of a fitness-relevant trait of clonal plants, stolon internode length. We explored the likely case of air asymmetric unimodal fitness profile with three model types. In constant selection models (CSMs), which are gametic, but not spatially explicit, evolving allele frequencies in the one-locus and five-loci cases did not correspond to optimum stolon internode length predicted by the spatially explicit, but not gametic, phenotypic model. This deviation was due to the asymmetry of the fitness profile. Gametic, spatially explicit individual-based (SEIB) modeling allowed us relaxing the CSM assumptions of constant selection with exclusively sexual reproduction. Important findings For entirely vegetative or sexual reproduction, predictions. of the gametic SEIB model were close to the ones of spatially explicit CSMs gametic phenotypic models, hut for mixed modes of reproduction they appoximated those of gametic, not spatially explicit CSMs. Thus, in contrast to gametic SEIB models, phenotypic models and, especially for few loci, also CSMs can be very misleading. We conclude that the evolution of trails governed by few quantitative trait loci appears hardly predictable by simple models, that genetic algorithms aiming at technical optimization may actually, miss the optimum and that selection may lead to loci with smaller effects, in derived compared with ancestral lines.
Resumo:
Fragmentation and vegetative regeneration from small fragments may contribute to population expansion, dispersal and establishment of new populations of introduced plants. However, no study has systematically tested whether a high capacity of vegetative regeneration is associated with a high degree of invasiveness. For small single-node fragments, the presence of internodes may increase regeneration capacity because internodes may store carbohydrates and proteins that can be used for regeneration. We conducted an experiment with 39 stoloniferous plant species to examine the regeneration capacity of small, single-node fragments with or without attached stolon internodes. We asked (1) whether the presence of stolon internodes increases regeneration from single-node fragments, (2) whether regeneration capacity differs between native and introduced species in China, and (3) whether regeneration capacity is positively associated with plant invasiveness at a regional scale (within China) and at a global scale. Most species could regenerate from single-node fragments, and the presence of internodes increased regeneration rate and subsequent growth and/or asexual reproduction. Regeneration capacity varied greatly among species, but showed no relationship to invasiveness, either in China or globally. High regeneration capacity from small fragments may contribute to performance of clonal plants in general, but it does not appear to explain differences in invasiveness among stoloniferous clonal species.
Resumo:
A comprehensive genetic analysis of 60 Mycoplasma sp. bovine group 7 isolates from different geographic origins and epidemiological settings is presented. Twenty-four isolates were recovered from the joints of calves during sporadic episodes of polyarthritis in geographically distinct regions of Queensland and New South Wales, Australia, including two clones of the type strain PG5O. A further three Australian isolates were also recovered from the tympanic bulla, retropharyngeal lymph node and the lung and another three isolates had unconfirmed histories. Six isolates originated from Germany, Portugal, Nigeria, and France. Twenty-four epidemiologically related isolates of Mycoplasma sp. bovine group 7 were recovered from multiple tissue sites and body fluids of infected calves with polyarthritis, mastitic milk, and from the stomach contents, lung and liver from aborted foetuses in three large, centrally managed dairy herds in New South Wales, Australia. Restriction endonuclease analysis (REA) of genomic DNA differentiated 29 Cfol profiles among these 60 isolates and grouped all 24 epidemiologically related isolates in a defined pattern showing a clonal origin. Three isolates of this clonal cluster were recovered from mastitic milk and the synovial exudate of clinically-affected calves and appeared sporadically for periods up to 18 months after the initial outbreak of polyarthritis indicating a persistent, close association of the organism with cattle in these herds. The Cfol profile representative of the clonal cluster was distinguishable from profiles of isolates recovered from multiple, unrelated cases of polyarthritis in Queensland and New South Wales and from other countries. All 24 isolates from the clonal cluster possessed a plasmid (pBG7AU) with a molecular size of 1022 bp. DNA sequence analysis of pBG7AU identified two open reading frames sharing 81 and 99% DNA sequence similarity with hypothetical replication control proteins A and B respectively, previously described in plasmid pADB201 isolated from M. mycoides subspecies mycoides. Other isolates of bovine group 7, epidemiologically unrelated to the clonal cluster, including two clones of the type strain PG5O, possessed a similar-sized plasmid. These data confirm that Mycoplasma sp. bovine group 7 is capable of migrating to, and multiplying within, different tissue sites within a single animal and among different animals within a herd.