16 resultados para RNase H

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The DNA nuclease activity encoded by the end1 gene, and its inactivation by mutation, was described in connection with the characterization of DNA topoisomerases in the fission yeast Schizosaccharomyces pombe (Uemura and Yanagida, 1984). Subsequently, end1 mutant strains were used for the preparation of cell extracts for the study of enzymes and intermediates involved in DNA metabolism. The molecular identification of the end1 gene and its identity with the pnu1 gene is presented. The end1-458 mutation alters glycine to glutamate in the conserved motif TGPYLP. The pnu1 gene codes for an RNase that is induced by nitrogen starvation (Nakashima et al., 2002b). Thus, the End1/Pnu1 protein, like related mitochondrial proteins in other organisms, is an example of a sugar-non-specific nuclease. The analysis of strains carrying a pnu1 deletion revealed no defects in meiotic recombination and spore viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interferon (IFN) type-I is of utmost importance in the innate antiviral defence of eukaryotic cells. The cells express intra- and extracellular receptors that monitor their surroundings for the presence of viral genomes. Bovine viral diarrhoea virus (BVDV), a Pestivirus of the family Flaviviridae, is able to prevent IFN synthesis induced by poly(IC), a synthetic dsRNA. The evasion of innate immunity might be a decisive ability of BVDV to establish persistent infection in its host. We report that ds- as well as ssRNA fragments of viral origin are able to trigger IFN synthesis, and that the viral envelope glycoprotein E(rns), that is also secreted from infected cells, is able to inhibit IFN expression induced by these extracellular viral RNAs. The RNase activity of E(rns) is required for this inhibition, and E(rns) degrades ds- and ssRNA at neutral pH. In addition, cells infected with a cytopathogenic strain of BVDV contain more dsRNA than cells infected with the homologous non-cytopathogenic strain, and the intracellular viral RNA was able to excite the IFN system in a 5'-triphosphate-, i.e. RIG-I-, independent manner. Functionally, E(rns) might represent a decoy receptor that binds and enzymatically degrades viral RNA that otherwise might activate the IFN defence by binding to Toll-like receptors of uninfected cells. Thus, the pestiviral RNase efficiently manipulates the host's self-nonself discrimination to successfully establish and maintain persistence and immunotolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RNase activity of the envelope glycoprotein E(rns) of the pestivirus bovine viral diarrhea virus (BVDV) is required to block type I interferon (IFN) synthesis induced by single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) in bovine cells. Due to the presence of an unusual membrane anchor at its C terminus, a significant portion of E(rns) is also secreted. In addition, a binding site for cell surface glycosaminoglycans is located within the C-terminal region of E(rns). Here, we show that the activity of soluble E(rns) as an IFN antagonist is not restricted to bovine cells. Extracellularly applied E(rns) protein bound to cell surface glycosaminoglycans and was internalized into the cells within 1 h of incubation by an energy-dependent mechanism that could be blocked by inhibitors of clathrin-dependent endocytosis. E(rns) mutants that lacked the C-terminal membrane anchor retained RNase activity but lost most of their intracellular activity as an IFN antagonist. Surprisingly, once taken up into the cells, E(rns) remained active and blocked dsRNA-induced IFN synthesis for several days. Thus, we propose that E(rns) acts as an enzymatically active decoy receptor that degrades extracellularly added viral RNA mainly in endolysosomal compartments that might otherwise activate intracellular pattern recognition receptors (PRRs) in order to maintain a state of innate immunotolerance. IMPORTANCE The pestiviral RNase E(rns) was previously shown to inhibit viral ssRNA- and dsRNA-induced interferon (IFN) synthesis. However, the localization of E(rns) at or inside the cells, its species specificity, and its mechanism of interaction with cell membranes in order to block the host's innate immune response are still largely unknown. Here, we provide strong evidence that the pestiviral RNase E(rns) is taken up within minutes by clathrin-mediated endocytosis and that this uptake is mostly dependent on the glycosaminoglycan binding site located within the C-terminal end of the protein. Remarkably, the inhibitory activity of E(rns) remains for several days, indicating the very potent and prolonged effect of a viral IFN antagonist. This novel mechanism of an enzymatically active decoy receptor that degrades a major viral pathogen-associated molecular pattern (PAMP) might be required to efficiently maintain innate and, thus, also adaptive immunotolerance, and it might well be relevant beyond the bovine species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To analyze concentrations of endometrial leukocytes in patients with idiopathic-repeated abortions. MATERIALS AND METHODS: Biopsies of exactly dated secretory endometrium in 25 patients with idiopathic-repeated abortions and 10 control patients without a history of miscarriage were compared with respect to the concentrations of T-helper cells (CD4), cytotoxic T-cells (CD8), B-cells (CD19) and uterine natural killer cells (CD56) by immunohistochemistry and RNase protection assays. RESULTS: All examined cells were detectable within secretory endometrium. No statistically significant differences of the examined immune-cell concentrations were seen between the control group and the repeated miscarriage group by either test. CONCLUSION: This study suggests that the concentrations of specific endometrial leukocytes in a non-pregnant cycle are not associated with repeated pregnancy loss. Thus, the hypothesis of an altered endometrial immunity in patients with repeated miscarriages, symbolized by persistently differing local immune-cell concentrations, has to be questioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While hemoplasma infections in domestic cats are well studied, almost no information is available on their occurrence in wild felids. The aims of the present study were to investigate wild felid species as possible reservoirs of feline hemoplasmas and the molecular characterization of the hemoplasma isolates. Blood samples from the following 257 wild felids were analyzed: 35 Iberian lynxes from Spain, 36 Eurasian lynxes from Switzerland, 31 European wildcats from France, 45 lions from Tanzania, and 110 Brazilian wild felids, including 12 wild felid species kept in zoos and one free-ranging ocelot. Using real-time PCR, feline hemoplasmas were detected in samples of the following species: Iberian lynx, Eurasian lynx, European wildcat, lion, puma, oncilla, Geoffroy's cat, margay, and ocelot. "Candidatus Mycoplasma haemominutum" was the most common feline hemoplasma in Iberian lynxes, Eurasian lynxes, Serengeti lions, and Brazilian wild felids, whereas "Candidatus Mycoplasma turicensis" was the most prevalent in European wildcats; hemoplasma coinfections were frequently observed. Hemoplasma infection was associated with species and free-ranging status of the felids in all animals and with feline leukemia virus provirus-positive status in European wildcats. Phylogenetic analyses of the 16S rRNA and the partial RNase P gene revealed that most hemoplasma isolates exhibit high sequence identities to domestic cat-derived isolates, although some isolates form different subclusters within the phylogenetic tree. In conclusion, 9 out of 15 wild felid species from three different continents were found to be infected with feline hemoplasmas. The effect of feline hemoplasma infections on wild felid populations needs to be further investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animals persistently infected (PI) with bovine viral diarrhea virus (BVDV) retain a strain-specific B- and T-cell immunotolerance. Pestiviral RNA triggers interferon (IFN) synthesis, and the viral RNase E(rns) inhibits IFN expression induced by extracellular viral RNA. In addition, N(pro) promotes the degradation of the transcription factor IRF-3, which effectively blocks IFN expression in BVDV-infected cells. As not all the potential target cells are infected in PI animals, these are 'chimeric' with respect to BVDV. This suggests that N(pro) and E(rns) are non-redundant IFN antagonists that act in infected and non-infected cells, respectively. Moreover, E(rns) may take a paradoxical function, both as virulence as well as "attenuation" factor: The former by preventing the activation of the innate and, consequently, of the adaptive immune system, the latter by minimizing the detrimental effects of systemic IFN production. Thus, BVDV maintains "self-tolerance" by avoiding the induction of IFN while itself being largely resistant to it without, however, interfering with the IFN action against unrelated viruses ('nonself'). This unique extension of 'self' to a virus suggests that the host's own RNases may have evolved as a guard against inadvertent activation of the innate immune system by host RNA, thus establishing a state of "innate tolerance".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human up-frameshift 1 (UPF1) is an ATP-dependent RNA helicase and phosphoprotein implicated in several biological processes but is best known for its key function in nonsense-mediated mRNA decay (NMD). Here we employed a combination of stable isotope labeling of amino acids in cell culture experiments to determine by quantitative proteomics UPF1 interactors. We used this approach to distinguish between RNA-mediated and protein-mediated UPF1 interactors and to determine proteins that preferentially bind the hypo- or the hyper-phosphorylated form of UPF1. Confirming and expanding previous studies, we identified the eukaryotic initiation factor 3 (eIF3) as a prominent protein-mediated interactor of UPF1. However, unlike previously reported, eIF3 binds to UPF1 independently of UPF1’s phosphorylation state. Furthermore, our data revealed many nucleus-associated RNA-binding proteins that preferentially associate with hyper-phosphorylated UPF1 in an RNase-sensitive manner, suggesting that UPF1 gets recruited to mRNA and becomes phosphorylated before being exported to the cytoplasm as part of the mRNP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ribonuclease activity of the soluble glycoprotein E(rns) of pestiviruses represents a unique mechanism to circumvent the host's innate immune system by blocking interferon type-I synthesis in response to extracellularly added single- (ss) and double-stranded (ds) RNA. However, the reason why pestiviruses encode a ribonuclease in addition to the abundant serum RNases remained elusive. Here, we show that the 5' UTR and NS5B regions of various strains of the RNA genome of the pestivirus bovine viral diarrhea virus (BVDV) are resistant to serum RNases and are potent TLR-3 agonists. Inhibitory activity of E(rns) was restricted to cleavable RNA products, and did not extend to the synthetic TLR-7/8 agonist R-848. RNA complexed with the antimicrobial peptide LL37 was protected from degradation by E(rns)in vitro but was fully inhibited by E(rns) in its ability to induce IFN in cell cultures, suggesting that the viral protein is mainly active in cleaving RNA in an intracellular compartment. We propose that secreted E(rns) represents a potent IFN antagonist, which degrades viral RNA that is resistant to the ubiquitous host RNases in the extracellular space. Thus, the viral RNase prevents its own pathogen-associated molecular pattern (PAMP) to inadvertently activate the IFN response that might break innate immunotolerance required for persistent pestivirus infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tricyclo (tc)-DNA belongs to the class of conformationally constrained DNA analogs that show enhanced binding properties to DNA and RNA. We prepared tc-oligonucleotides up to 17 nt in length, and evaluated their binding efficiency and selectivity towards complementary RNA, their biological stability in serum, their RNase H inducing potential and their antisense activity in a cellular assay. Relative to RNA or 2'-O-Me-phosphorothioate (PS)-RNA, fully modified tc-oligodeoxynucleotides, 10-17 nt in length, show enhanced selectivity and enhanced thermal stability by approximately 1 degrees C/modification in binding to RNA targets. Tricyclodeoxyoligonucleotides are completely stable in heat-deactivated fetal calf serum at 37 degree C. Moreover, tc-DNA-RNA duplexes are not substrates for RNase H. To test for antisense effects in vivo, we used HeLa cell lines stably expressing the human beta-globin gene with two different point mutations in the second intron. These mutations lead to the inclusion of an aberrant exon in beta-globin mRNA. Lipofectamine-mediated delivery of a 17mer tc-oligodeoxynucleotide complementary to the 3'-cryptic splice site results in correction of aberrant splicing already at nanomolar concentrations with up to 100-fold enhanced efficiency relative to a 2'-O-Me-PS-RNA oligonucleotide of the same length and sequence. In contrast to 2'-O-Me-PS-RNA, tc-DNA shows antisense activity even in the absence of lipofectamine, albeit only at much higher oligonucleotide concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-amplifying replicon RNA (RepRNA) are large molecules (12-14kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONTENTS. 1. Did life begin with catalytic RNA?–2. Self-splicing and self-cleaving RNAs–2.1 Self-splicing of group I introns – 2.2 Self-splicing of group II introns – 2.3 Self-cleaving RNAs–3. Splicing mediated by trans-acting factors–3.1 Group III introns – 3.2 Splicing of nuclear pre-mRNAs – 3.3 Trans-splicing – 3.4 Is nuclear pre-mRNA splicing evolutionarily related to group I and group II self-splicing?– 3.5 Non-RNA mediated splicing of tRNAs–4. Processing of ribosomal precursor RNAs–5. Processing of pre-mRNA 3′ ends–5.1 Polyadenylation – 5.2 Histone pre-mRNA 3′ processing–6. Other RNPs involved in metabolic mechanisms–6.1 5′ end processing of pre-tRNAs by RNase P – 6.2 The signal recognition particle – 6.3 Telomerase – 6.4 RNA editing in trypanosomatid mitochondria–7. Why RNA?