34 resultados para RNA Polymerase II
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.
Resumo:
TFIIH has been implicated in several fundamental cellular processes, including DNA repair, cell cycle progression, and transcription. In transcription, the helicase activity of TFIIH functions to melt promoter DNA; however, the in vivo function of the Cdk7 kinase subunit of TFIIH, which has been hypothesized to be involved in RNA polymerase II (Pol II) phosphorylation, is not clearly understood. Using temperature-sensitive and null alleles of cdk7, we have examined the role of Cdk7 in the activation of Drosophila heat shock genes. Several in vivo approaches, including polytene chromosome immunofluorescence, nuclear run-on assays, and, in particular, a protein-DNA cross-linking assay customized for adults, revealed that Cdk7 kinase activity is required for full activation of heat shock genes, promoter-proximal Pol II pausing, and Pol II-dependent chromatin decondensation. The requirement for Cdk7 occurs very early in the transcription cycle. Furthermore, we provide evidence that TFIIH associates with the elongation complex much longer than previously suspected.
Resumo:
Mini-genomes expressing two reporter genes and a variable gene junction were used to study Sendai virus RNA polymerase (RdRp) scanning for the mRNA start signal of the downstream gene (gs2). We found that RdRp could scan the template efficiently as long as the initiating uridylate of gs2 (3' UCCCnnUUUC) was preceded by the conserved intergenic region (3' GAA) and the last 3 uridylates of the upstream gene end signal (ge1; 3' AUUCUUUUU). The end of the leader sequence (3' CUAAAA, which precedes gs1) could also be used for gene2 expression, but this sequence was considerably less efficient. Increasing the distance between ge1 and gs2 (up to 200 nt) led to the progressive loss of gene2 expression, in which half of gene2 expression was lost for each 70 nucleotides of intervening sequence. Beyond 200 nt, gene2 expression was lost more slowly. Our results suggest that there may be two populations of RdRp that scan at gene junctions, which can be distinguished by the efficiency with which they can scan the genome template for gs.
Resumo:
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Resumo:
Replication-dependent histone genes are up-regulated during the G1/S phase transition to meet the requirement for histones to package the newly synthesized DNA. In mammalian cells, this increment is achieved by enhanced transcription and 3' end processing. The non-polyadenylated histone mRNA 3' ends are generated by a unique mechanism involving the U7 small ribonucleoprotein (U7 snRNP). By using affinity purification methods to enrich U7 snRNA, we identified FUS/TLS as a novel U7 snRNP interacting protein. Both U7 snRNA and histone transcripts can be precipitated by FUS antibodies predominantly in the S phase of the cell cycle. Moreover, FUS depletion leads to decreased levels of correctly processed histone mRNAs and increased levels of extended transcripts. Interestingly, FUS antibodies also co-immunoprecipitate histone transcriptional activator NPAT and transcriptional repressor hnRNP UL1 in different phases of the cell cycle. We further show that FUS binds to histone genes in S phase, promotes the recruitment of RNA polymerase II and is important for the activity of histone gene promoters. Thus, FUS may serve as a linking factor that positively regulates histone gene transcription and 3' end processing by interacting with the U7 snRNP and other factors involved in replication-dependent histone gene expression.
Resumo:
Here we describe a collection of methods that have been adapted to produce highly efficient nuclear and cytoplasmic extracts from adenovirus-infected HeLa cells. We describe how to produce extracts from virus-infected cells and how to analyze RNA splicing in vitro using T7 RNA polymerase-derived splicing substrate RNAs.
Resumo:
Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.
Resumo:
The roles played by many ncRNAs remain largely unknown. Similarly, relatively little is known about the RNA binding proteins involved in processing ncRNA. Identification of new RNA/RNA binding protein (RBP) interactions may pave the way to gain a better understanding of the complex events occurring within cells during gene expression and ncRNA biogenesis. The development of chemical tools for the isolation of RBPs is of paramount importance. In this context, we report on the synthesis of the uridine phosphoramidite U Dz that bears a diazirine moiety on the nucleobase. RNA probes containing U Dz units were irradiated in the presence of single-stranded DNA binding protein (SSB), which is also known to bind ssRNAs, and shown to efficiently (15% yield) and selectively cross-link to the protein. The corresponding diazirine-modified uridine triphosphate U DzTP was synthesized and its capacity to act as a substrate for the T7 RNA polymerase was tested in transcription assays. U DzTP was accepted with a maximum yield of 38% for a 26mer RNA containing a single incorporation and 28% yield for triple consecutive incorporations. Thus, this uridine analogue represents a convenient biochemical tool for the identification of RNA binding proteins and unraveling the role and function played by ncRNAs.
Resumo:
Although T. brucei has to challenge tremendous environment changes, e.g. switch from the bloodstream form in mammalian hosts to the mid gut form present in tsetse flies, there is no evidence for differential regulation of RNA Pol II transcription. Instead, constitutive transcription appears to occur. This observation indicates that protein levels have to be regulated by post-transcriptional mechanisms. It has been shown that non-protein coding RNAs (ncRNAs) are crucial in regulatory networks (e.g. chromosome remodelling; RNA polymerase activity; mRNA turnover; etc.), but all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. This is unexpected, since the ribosome has a central role during gene expression and due to the assumption that the primordial translation system most likely received direct regulatory input from small molecules including ncRNA cofactors. In our lab, it has been discovered that ncRNAs are able to directly bind to the ribosome, therefore influencing the translation rate in Haloferax volcanii and Saccharomyces cerevisiae. In order to extend this idea of ribosome-binding ncRNAs in mammalian parasites, we want to investigate this mechanism in T. brucei. Accordingly, we performed a genomic screen for small ribosome-associated RNAs followed by functional analyses of possible candidates. With the help of this genomic screen, we found tRNAs that are alternated and tRNA halves that are differentially expressed upon nutritional stress.
Resumo:
Although T. brucei has to challenge tremendous environment changes, e.g. switch from the bloodstream form in mammalian hosts to the mid gut form present in tsetse flies, there is no evidence for differential regulation of RNA Pol II transcription. Instead, constitutive transcription appears to occur. This observation indicates that protein levels have to be regulated by post-transcriptional mechanisms. It has been shown that non-protein coding RNAs (ncRNAs) are crucial in regulatory networks (e.g. chromosome remodelling; RNA polymerase activity; mRNA turnover; etc.), but all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. This is unexpected, since the ribosome has a central role during gene expression and due to the assumption that the primordial translation system most likely received direct regulatory input from small molecules including ncRNA cofactors. In our lab, it has been discovered that ncRNAs are able to directly bind to the ribosome, therefore influencing the translation rate in Haloferax volcanii and Saccharomyces cerevisiae. In order to extend this idea of ribosome-binding ncRNAs in mammalian parasites, we want to investigate this mechanism in T. brucei. Accordingly, we performed a genomic screen for small ribosome-associated RNAs followed by functional analyses of possible candidates. With the help of this genomic screen, we found tRNAs that are alternated and tRNA halves that are differentially expressed upon nutritional stress.
Resumo:
Mycoplasma mycoides subsp. capri and Mycoplasma mycoides subsp. mycoides LC can be combined into one taxon on the basis of several contributions on both DNA sequence and protein analyses reported in the literature. Moreover, for the differentiation and identification of mycoplasmas of the "mycoides cluster", we investigated the rpoB gene, encoding the beta-subunit of the RNA polymerase. A segment of 527 bp of the rpoB gene was amplified from 31 strains of ruminant mycoplasmas by PCR. The nucleotide sequences were determined and aligned, and accurate genetic relationships were calculated. Cluster analysis of rpoB DNA allowed species differentiation within the "mycoides cluster" and confirmed that M. mycoides subsp. capri and M. mycoides subsp. mycoides LC cannot be distinguished from each other. "Mycoplasma mycoides subsp. capri" is proposed as a common name for both subspecies.
Resumo:
The genus Campylobacter comprises 17 species, some of which are important animal and human pathogens. To gain more insight into the genetic relatedness of this genus and to improve the molecular tools available for diagnosis, a universal sequencing approach was established for the gene encoding the beta-subunit of RNA polymerase (rpoB) for the genus Campylobacter. A total of 59 strains, including the type strains of currently recognized species as well as field isolates, were investigated in the study. A primer set specific for Campylobacter species enabled straightforward amplification and sequencing of a 530 bp fragment of the rpoB gene. The 16S rRNA gene sequences of all of the strains were determined in parallel. A good congruence was obtained between 16S rRNA and rpoB gene sequence-based trees within the genus Campylobacter. The branching of the rpoB tree was similar to that of the 16S rRNA gene tree, even though a few discrepancies were observed for certain species. The resolution of the rpoB gene within the genus Campylobacter was generally much higher than that of the 16S rRNA gene sequence, resulting in a clear separation of most species and even some subspecies. The universally applicable amplification and sequencing approach for partial rpoB gene sequence determination provides a powerful tool for DNA sequence-based discrimination of Campylobacter species.
Resumo:
The nonstructural protein NS2-3 of pestiviruses undergoes tightly regulated processing. For bovine viral diarrhea virus it was shown that uncleaved NS2-3 is required for infectious particle formation while cleaved NS3 is essential for genome replication. To further investigate the functions of NS2-3 and NS4A in the pestivirus life cycle, we established T7 RNA polymerase-dependent trans-complementation for p7-NS2-3-4A of classical swine fever virus (CSFV). Expression of NS2-3 and NS4A in trans restored the production of infectious particles from genomes lacking NS2-3 expression. Co-expression of cleaved NS4A was essential. None of the enzymatic activities harbored by NS2-3 were required for infectious particle formation. Importantly, expression of uncleavable NS2-3 together with NS4A rescued infectious particles from a genome lacking NS2, demonstrating that cleaved NS2 per se has no additional essential function. These data indicate that NS2-3 and NS3, each in association with NS4A, have independent functions in the CSFV life cycle.