22 resultados para RNA Dynamic Structure
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Translation initiation factors eIF4A and eIF4G form, together with the cap-binding factor eIF4E, the eIF4F complex, which is crucial for recruiting the small ribosomal subunit to the mRNA 5' end and for subsequent scanning and searching for the start codon. eIF4A is an ATP-dependent RNA helicase whose activity is stimulated by binding to eIF4G. We report here the structure of the complex formed by yeast eIF4G's middle domain and full-length eIF4A at 2.6-A resolution. eIF4A shows an extended conformation where eIF4G holds its crucial DEAD-box sequence motifs in a productive conformation, thus explaining the stimulation of eIF4A's activity. A hitherto undescribed interaction involves the amino acid Trp-579 of eIF4G. Mutation to alanine results in decreased binding to eIF4A and a temperature-sensitive phenotype of yeast cells that carry a Trp579Ala mutation as its sole source for eIF4G. Conformational changes between eIF4A's closed and open state provide a model for its RNA-helicase activity.
Resumo:
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Resumo:
A set of seven Sm proteins assemble on the Sm-binding site of spliceosomal U snRNAs to form the ring-shaped Sm core. The U7 snRNP involved in histone RNA 3' processing contains a structurally similar but biochemically unique Sm core in which two of these proteins, Sm D1 and D2, are replaced by Lsm10 and by another as yet unknown component. Here we characterize this factor, termed Lsm11, as a novel Sm-like protein with apparently two distinct functions. In vitro studies suggest that its long N-terminal part mediates an important step in histone mRNA 3'-end cleavage, most likely by recruiting a zinc finger protein previously identified as a processing factor. In contrast, the C-terminal part, which comprises two Sm motifs interrupted by an unusually long spacer, is sufficient to assemble with U7, but not U1, snRNA. Assembly of this U7-specific Sm core depends on the noncanonical Sm-binding site of U7 snRNA. Moreover, it is facilitated by a specialized SMN complex that contains Lsm10 and Lsm11 but lacks Sm D1/D2. Thus, the U7-specific Lsm11 protein not only specifies the assembly of the U7 Sm core but also fulfills an important role in U7 snRNP-mediated histone mRNA processing.
Resumo:
Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.
Resumo:
OBJECTIVES: To test whether dynamic contour tonometry yields ocular pulse amplitude (OPA) measurements that are independent of corneal thickness and curvature, and to assess variables of observer agreement. METHODS: In a multivariate cluster analysis on 223 eyes, the relationship between central corneal thickness, corneal curvature, axial length, anterior chamber depth, intraocular pressure, sex, age, and OPA measurements was assessed. Intraobserver and interobserver variabilities were calculated from repeated measurements obtained from 8 volunteers by 4 observers. RESULTS: The OPA readings were not affected by central corneal thickness (P = .08), corneal curvature (P = .47), anterior chamber depth (P = .80), age (P = .60), or sex (P = .73). There was a positive correlation between OPA and intraocular pressure (0.12 mm Hg/1 mm Hg of intraocular pressure; P<.001) and a negative correlation between OPA and axial length (0.27 mm Hg/1 mm of length; P<.001). Intraobserver and interobserver variabilities were 0.08 and 0.02 mm Hg, respectively, and the intraclass correlation coefficient was 0.89. CONCLUSIONS: The OPA readings obtained with dynamic contour tonometry in healthy subjects are not influenced by the structure of the anterior segment of the eye but are affected by intraocular pressure and axial length. We found a high amount of agreement within and between observers.
Resumo:
The solution structure of cupiennin 1a, a 35 residue, basic antibacterial peptide isolated from the venom of the spider Cupiennius salei, has been determined by nuclear magnetic resonance (NMR) spectroscopy. The peptide was found to adopt a helix−hinge−helix structure in a membrane mimicking solvent. The hinge may play a role in allowing the amphipathic N-terminal helix and polar C-terminal helix to orient independently upon membrane binding, in order to achieve maximal antibacterial efficacy. Solid-state 31P and 2H NMR was used to further study the effects of cupiennin 1a on the dynamic properties of lipid membranes, using zwitterionic chain deuterated dimyristoylphosphatidylcholine (d54-DMPC) and anionic dimyristoylphosphatidylglycerol (DMPG) multilamellar vesicles. In d54-DMPC alone, cupiennin 1a caused a decrease in the 31P chemical shift anisotropy, indicating some interaction with the lipid head groups, and a decrease in order over the entire acyl chain. In contrast, for the mixed (d54-DMPC/DMPG) lipid system cupiennin 1a appeared to induce lateral separation of the two lipids as evidenced by the 31P spectra, in which the peptide preferentially interacted with DMPG. Little effect was observed on the deuterated acyl chain order parameters in the d54-DMPC/DMPG model membranes. Furthermore, 31P NMR relaxation measurements confirmed a differential effect on the lipid motions depending upon the membrane composition. Therefore, subtle differences are likely in the mechanism by which cupiennin 1a causes membrane lysis in either prokaryotic or eukaryotic cells, and may explain the specific spectrum of activity.
Resumo:
RNA helicases represent a large family of proteins implicated in many biological processes including ribosome biogenesis, splicing, translation and mRNA degradation. However, these proteins have little substrate specificity, making inhibition of selected helicases a challenging problem. The prototypical DEAD box RNA helicase, eIF4A, works in conjunction with other translation factors to prepare mRNA templates for ribosome recruitment during translation initiation. Herein, we provide insight into the selectivity of a small molecule inhibitor of eIF4A, hippuristanol. This coral-derived natural product binds to amino acids adjacent to, and overlapping with, two conserved motifs present in the carboxy-terminal domain of eIF4A. Mutagenesis of amino acids within this region allowed us to alter the hippuristanol-sensitivity of eIF4A and undertake structure/function studies. Our results provide an understanding into how selective targeting of RNA helicases for pharmacological intervention can be achieved.
Resumo:
P450 oxidoreductase (POR) is the obligate electron donor for microsomal cytochrome P450s and mutations in POR cause several metabolic disorders. We have modeled the structure of human P450 oxidoreductase by in silico amino acid replacements in the rat POR crystal structure. The rat POR has 94% homology with human POR and 38 amino acids were replaced to make its sequence identical to human POR. Several rounds of molecular dynamic simulations refined the model and removed structural clashes from side chain alterations of replaced amino acids. This approach has the advantage of keeping the cofactor contacts and structural features of the core enzyme intact which could not be achieved by homology based approaches. The final model from our approach was of high quality and compared well with experimentally determined structures of other PORs. This model will be used for analyzing the structural implications of mutations and polymorphisms in human POR.
Resumo:
Mainstream IDEs such as Eclipse support developers in managing software projects mainly by offering static views of the source code. Such a static perspective neglects any information about runtime behavior. However, object-oriented programs heavily rely on polymorphism and late-binding, which makes them difficult to understand just based on their static structure. Developers thus resort to debuggers or profilers to study the system's dynamics. However, the information provided by these tools is volatile and hence cannot be exploited to ease the navigation of the source space. In this paper we present an approach to augment the static source perspective with dynamic metrics such as precise runtime type information, or memory and object allocation statistics. Dynamic metrics can leverage the understanding for the behavior and structure of a system. We rely on dynamic data gathering based on aspects to analyze running Java systems. By solving concrete use cases we illustrate how dynamic metrics directly available in the IDE are useful. We also comprehensively report on the efficiency of our approach to gather dynamic metrics.
Resumo:
We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.
Resumo:
INTRODUCTION Intrauterine Growth Restriction (IUGR) is a multifactorial disease defined by an inability of the fetus to reach its growth potential. IUGR not only increases the risk of neonatal mortality/morbidity, but also the risk of metabolic syndrome during adulthood. Certain placental proteins have been shown to be implicated in IUGR development, such as proteins from the GH/IGF axis and angiogenesis/apoptosis processes. METHODS Twelve patients with term IUGR pregnancy (birth weight < 10th percentile) and 12 CTRLs were included. mRNA was extracted from the fetal part of the placenta and submitted to a subtraction method (Clontech PCR-Select cDNA Subtraction). RESULTS One candidate gene identified was the long non-coding RNA NEAT1 (nuclear paraspeckle assembly transcript 1). NEAT1 is the core component of a subnuclear structure called paraspeckle. This structure is responsible for the retention of hyperedited mRNAs in the nucleus. Overall, NEAT1 mRNA expression was 4.14 (±1.16)-fold increased in IUGR vs. CTRL placentas (P = 0.009). NEAT1 was exclusively localized in the nuclei of the villous trophoblasts and was expressed in more nuclei and with greater intensity in IUGR placentas than in CTRLs. PSPC1, one of the three main proteins of the paraspeckle, co-localized with NEAT1 in the villous trophoblasts. The expression of NEAT1_2 mRNA, the long isoform of NEAT1, was only modestly increased in IUGR vs. CTRL placentas. DISCUSSION/CONCLUSION The increase in NEAT1 and its co-localization with PSPC1 suggests an increase in paraspeckles in IUGR villous trophoblasts. This could lead to an increased retention of important mRNAs in villous trophoblasts nuclei. Given that the villous trophoblasts are crucial for the barrier function of the placenta, this could in part explain placental dysfunction in idiopathic IUGR fetuses.
Resumo:
We present the synthesis of the two novel nucleosides iso-tc-T and bcen-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6’–C7’ within the carbocyclic ring is planarized by either the presence of a C6’–C7’ double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2’-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bcen-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3’-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that Tm data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.
Resumo:
The polypeptide composition of the U7 small nuclear ribonucleoprotein (snRNP) involved in histone messenger RNA (mRNA) 3' end formation has recently been elucidated. In contrast to spliceosomal snRNPs, which contain a ring-shaped assembly of seven so-called Sm proteins, in the U7 snRNP the Sm proteins D1 and D2 are replaced by U7-specific Sm-like proteins, Lsm10 and Lsm11. This polypeptide composition and the unusual structure of Lsm11, which plays a role in histone RNA processing, represent new themes in the biology of Sm/Lsm proteins. Moreover this structure has important consequences for snRNP assembly that is mediated by two complexes containing the PRMT5 methyltransferase and the SMN (survival of motor neurons) protein, respectively. Finally, the ability to alter this polypeptide composition by a small mutation in U7 snRNA forms the basis for using modified U7 snRNA derivatives to alter specific pre-mRNA splicing events, thereby opening up a new way for antisense gene therapy.