7 resultados para RESPONSE ERROR
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Existing lower-limb, region-specific, patient-reported outcome measures have clinimetric limitations, including limitations in psychometric characteristics (eg, lack of internal consistency, lack of responsiveness, measurement error) and the lack of reported practical and general characteristics. A new patient-reported outcome measure, the Lower Limb Functional Index (LLFI), was developed to address these limitations. Objective The purpose of this study was to overcome recognized deficiencies in existing lower-limb, region-specific, patient-reported outcome measures through: (1) development of a new lower-extremity outcome scale (ie, the LLFI) and (2) evaluation of the clinimetric properties of the LLFI using the Lower Extremity Functional Scale (LEFS) as a criterion measure. Design This was a prospective observational study. Methods The LLFI was developed in a 3-stage process of: (1) item generation, (2) item reduction with an expert panel, and (3) pilot field testing (n=18) for reliability, responsiveness, and sample size requirements for a larger study. The main study used a convenience sample (n=127) from 10 physical therapy clinics. Participants completed the LLFI and LEFS every 2 weeks for 6 weeks and then every 4 weeks until discharge. Data were used to assess the psychometric, practical, and general characteristics of the LLFI and the LEFS. The characteristics also were evaluated for overall performance using the Measurement of Outcome Measures and Bot clinimetric assessment scales. Results The LLFI and LEFS demonstrated a single-factor structure, comparable reliability (intraclass correlation coefficient [2,1]=.97), scale width, and high criterion validity (Pearson r=.88, with 95% confidence interval [CI]). Clinimetric performance was higher for the LLFI compared with the LEFS on the Measurement of Outcome Measures scale (96% and 95%, respectively) and the Bot scale (100% and 83%, respectively). The LLFI, compared with the LEFS, had improved responsiveness (standardized response mean=1.75 and 1.64, respectively), minimal detectable change with 90% CI (6.6% and 8.1%, respectively), and internal consistency (α=.91 and .95, respectively), as well as readability with reduced user error and completion and scoring times. Limitations Limitations of the study were that only participants recruited from outpatient physical therapy clinics were included and that no specific conditions or diagnostic subgroups were investigated. Conclusion The LLFI demonstrated sound clinimetric properties. There was lower response error, efficient completion and scoring, and improved responsiveness and overall performance compared with the LEFS. The LLFI is suitable for assessment of lower-limb function.
Resumo:
The purpose of this study was (1) to determine frequency and type of medication errors (MEs), (2) to assess the number of MEs prevented by registered nurses, (3) to assess the consequences of ME for patients, and (4) to compare the number of MEs reported by a newly developed medication error self-reporting tool to the number reported by the traditional incident reporting system. We conducted a cross-sectional study on ME in the Cardiovascular Surgery Department of Bern University Hospital in Switzerland. Eligible registered nurses (n = 119) involving in the medication process were included. Data on ME were collected using an investigator-developed medication error self reporting tool (MESRT) that asked about the occurrence and characteristics of ME. Registered nurses were instructed to complete a MESRT at the end of each shift even if there was no ME. All MESRTs were completed anonymously. During the one-month study period, a total of 987 MESRTs were returned. Of the 987 completed MESRTs, 288 (29%) indicated that there had been an ME. Registered nurses reported preventing 49 (5%) MEs. Overall, eight (2.8%) MEs had patient consequences. The high response rate suggests that this new method may be a very effective approach to detect, report, and describe ME in hospitals.
Resumo:
QUESTION UNDER STUDY To establish at what stage Swiss hospitals are in implementing an internal standard concerning communication with patients and families after an error that resulted in harm. METHODS Hospitals were identified via the Swiss Hospital Association's website. An anonymous questionnaire was sent during September and October 2011 to 379 hospitals in German, French or Italian. Hospitals were asked to specify their hospital type and the implementation status of an internal hospital standard that decrees that patients or their relatives are to be promptly informed about medical errors that result in harm. RESULTS Responses from a total of 205 hospitals were received, a response rate of 54%. Most responding hospitals (62%) had an error disclosure standard or planned to implement one within 12 months. The majority of responding university and acute care (75%) hospitals had introduced a disclosure standard or were planning to do so. In contrast, the majority of responding psychiatric, rehabilitation and specialty (53%) clinics had not introduced a standard. CONCLUSION It appears that Swiss hospitals are in a promising state in providing institutional support for practitioners disclosing medical errors to patients. This has been shown internationally to be one important factor in encouraging the disclosure of medical errors. However, many hospitals, in particular psychiatric, rehabilitation and specialty clinics, have not implemented an error disclosure policy. Further research is needed to explore the underlying reasons.
In the aftermath of medical error : Caring for patients, family, and the healthcare workers involved
Resumo:
Medical errors, in particular those resulting in harm, pose a serious situation for patients ("first victims") and the healthcare workers involved ("second victims") and can have long-lasting and distressing consequences. To prevent a second traumatization, appropriate and empathic interaction with all persons involved is essential besides error analysis. Patients share a nearly universal, broad preference for a complete disclosure of incidents, regardless of age, gender, or education. This includes the personal, timely and unambiguous disclosure of the adverse event, information relating to the event, its causes and consequences, and an apology and sincere expression of regret. While the majority of healthcare professionals generally support and honest and open disclosure of adverse events, they also face various barriers which impede the disclosure (e.g., fear of legal consequences). Despite its essential importance, disclosure of adverse events in practice occurs in ways that are rarely acceptable to patients and their families. The staff involved often experiences acute distress and an intense emotional response to the event, which may become chronic and increase the risk of depression, burnout and post-traumatic stress disorders. Communication with peers is vital for people to be able to cope constructively and protectively with harmful errors. Survey studies among healthcare workers show, however, that they often do not receive sufficient individual and institutional support. Healthcare organizations should prepare for medical errors and harmful events and implement a communication plan and a support system that covers the requirements and different needs of patients and the staff involved.
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
Introduction: Clinical reasoning is essential for the practice of medicine. In theory of development of medical expertise it is stated, that clinical reasoning starts from analytical processes namely the storage of isolated facts and the logical application of the ‘rules’ of diagnosis. Then the learners successively develop so called semantic networks and illness-scripts which finally are used in an intuitive non-analytic fashion [1], [2]. The script concordance test (SCT) is an example for assessing clinical reasoning [3]. However the aggregate scoring [3] of the SCT is recognized as problematic [4]. The SCT`s scoring leads to logical inconsistencies and is likely to reflect construct-irrelevant differences in examinees’ response styles [4]. Also the expert panel judgments might lead to an unintended error of measurement [4]. In this PhD project the following research questions will be addressed: 1. How does a format look like to assess clinical reasoning (similar to the SCT but) with multiple true-false questions or other formats with unambiguous correct answers, and by this address the above mentioned pitfalls in traditional scoring of the SCT? 2. How well does this format fulfill the Ottawa criteria for good assessment, with special regards to educational and catalytic effects [5]? Methods: 1. In a first study it shall be assessed whether designing a new format using multiple true-false items to assess clinical reasoning similar to the SCT-format is arguable in a theoretically and practically sound fashion. For this study focus groups or interviews with assessment experts and students will be undertaken. 2. In an study using focus groups and psychometric data Norcini`s and colleagues Criteria for Good Assessment [5] shall be determined for the new format in a real assessment. Furthermore the scoring method for this new format shall be optimized using real and simulated data.