35 resultados para RESISTANCE PROTEIN
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Multidrug resistance protein 4 (MRP4) is a transmembrane transport protein found in many cell types and is involved in substrate-specific transport of endogenous and exogenous substrates. Recently, it has shown to be expressed in prostate cancer cell lines and to be among the most commonly upregulated transcripts in prostate cancer, although a comprehensive expression analysis is lacking so far. We aimed to investigate its expression by immunohistochemistry in a larger cohort of neoplastic and nonneoplastic prostate tissues (n = 441) and to correlate its expression with clinicopathological parameters including PSA-free survival times and molecular correlates of androgen signaling (androgen receptor (AR), prostate-specific antigen (PSA), and forkhead box A (FoxA)). MRP4 is widely expressed in benign and neoplastic prostate epithelia, but its expression gradually decreases during tumor progression towards castrate-resistant disease. Concordantly, it correlated with conventional prognosticators of disease progression and-within the group of androgen-dependent tumors-with AR and FoxA expression. Moreover, lower levels of MRP4 expression were associated with shorter PSA relapse-free survival times in the androgen-dependent group. In benign tissues, we found zone-dependent differences of MRP4 expression, with the highest levels in the peripheral and central zones. Although MRP4 is known to be regulated in prostate cancer, this study is the first to demonstrate a gradual downregulation of MRP4 protein during malignant tumor progression and a prognostic value of this loss of expression.
Resumo:
Amicrobial pustulosis of the folds (APF) is a recently described entity characterized by relapsing pustular lesions predominantly involving the cutaneous flexures and scalp. This disease typically occurs in association with systemic lupus erythematosus and a variety of other autoimmune diseases. We here describe an APF-like pustular eruption predominantly affecting the scalp, face and trunk, occurring during long-term infliximab treatment for Crohn's disease. Immunohistochemical staining of skin biopsy specimens for myxovirus resistance protein A, a marker for type 1 interferon-inducible proteins, showed increased staining in the epidermis and dermal mononuclear inflammatory infiltrate. Our observation further extends the spectrum of cutaneous adverse reactions potentially related to anti-tumor necrosis factor-α, the clinical context in which APF can occur as well as its clinical presentations.
Resumo:
Clinical resistance to chemotherapy in acute myeloid leukemia (AML) is associated with the expression of the multidrug resistance (MDR) proteins P-glycoprotein, encoded by the MDR1/ABCB1 gene, multidrug resistant-related protein (MRP/ABCC1), the lung resistance-related protein (LRP), or major vault protein (MVP), and the breast cancer resistance protein (BCRP/ABCG2). The clinical value of MDR1, MRP1, LRP/MVP, and BCRP messenger RNA (mRNA) expression was prospectively studied in 154 newly diagnosed AML patients >or=60 years who were treated in a multicenter, randomized phase 3 trial. Expression of MDR1 and BCRP showed a negative whereas MRP1 and LRP showed a positive correlation with high white blood cell count (respectively, p < 0.05, p < 0.001, p < 0.001 and p < 0.001). Higher BCRP mRNA was associated with secondary AML (p < 0.05). MDR1 and BCRP mRNA were highly significantly associated (p < 0.001), as were MRP1 and LRP mRNA (p < 0.001) expression. Univariate regression analyses revealed that CD34 expression, increasing MDR1 mRNA as well as MDR1/BCRP coexpression, were associated with a lower complete response (CR) rate and with worse event-free survival and overall survival. When adjusted for other prognostic actors, only CD34-related MDR1/BCRP coexpression remained significantly associated with a lower CR rate (p = 0.03), thereby identifying a clinically resistant subgroup of elderly AML patients.
Resumo:
A missense variant (c.1637C>T, T546M) in ABCC11 encoding the MRP8 (multidrug resistance protein 8), a transporter of 5-fluorodeoxyuridine monophosphate, has been associated with an increased risk of 5-fluorouracil-related severe leukopenia. To validate this association, we investigated the impact of the ABCC11 variants c.1637C>T, c.538G>A and c.395+1087C>T on the risk of early-onset fluoropyrimidine-related toxicity in 514 cancer patients. The ABCC11 variant c.1637C>T was strongly associated with severe leukopenia in patients carrying risk variants in DPYD, encoding the key fluoropyrimidine-metabolizing enzyme dihydropyrimidine dehydrogenase (odds ratio (OR): 71.0; 95% confidence interval (CI): 2.5-2004.8; Pc.1637C>T*DPYD=0.013). In contrast, in patients without DPYD risk variants, no association with leukopenia (OR: 0.95; 95% CI: 0.34-2.6) or overall fluoropyrimidine-related toxicity (OR: 1.02; 95% CI: 0.5-2.1) was observed. Our study thus suggests that c.1637C>T affects fluoropyrimidine toxicity to leukocytes particularly in patients with high drug exposure, for example, because of reduced fluoropyrimidine catabolism.
Resumo:
AIMS/HYPOTHESIS: Retinol-binding protein 4 (RBP4) has recently been reported to be associated with insulin resistance and the metabolic syndrome. This study tested the hypothesis that RBP4 is a marker of insulin resistance and the metabolic syndrome in patients with type 2 diabetes or coronary artery disease (CAD) or in non-diabetic control subjects without CAD. METHODS: Serum RBP4 was measured in 365 men (126 with type 2 diabetes, 143 with CAD and 96 control subjects) and correlated with the homeostasis model assessment of insulin resistance index (HOMA-IR), components of the metabolic syndrome and lipoprotein metabolism. RBP4 was detected by ELISA and validated by quantitative Western blotting. RESULTS: RBP4 concentrations detected by ELISA were shown to be strongly associated with the results gained in quantitative Western blots. There were no associations of RBP4 with HOMA-IR or HbA(1c) in any of the groups studied. In patients with type 2 diabetes there were significant positive correlations of RBP4 with total cholesterol, LDL-cholesterol, VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity. In patients with CAD, there were significant associations of RBP4 with VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity, while non-diabetic control subjects without CAD showed positive correlations of RBP4 with VLDL-cholesterol and plasma triacylglycerol. CONCLUSIONS/INTERPRETATION: RBP4 does not seem to be a valuable marker for identification of the metabolic syndrome or insulin resistance in male patients with type 2 diabetes or CAD. Independent associations of RBP4 with pro-atherogenic lipoproteins and enzymes of lipoprotein metabolism indicate a possible role of RBP4 in lipid metabolism.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.
Resumo:
Downregulation of the unfolded protein response mediates proteasome inhibitor resistance in Multiple Myeloma.The Human Immunodeficieny Virus protease inhibitor nelfinavir activates the unfolded protein response in vitro. We determined dose limiting toxicity and recommended dose for phase II of nelfinavir in combination with the proteasome inhibitor bortezomib. 12 patients with advanced hematological malignancies were treated with nelfinavir (2500 - 5000 mg/d p.o., d 1-14, 3+3 dose escalation) and bortezomib (1.3 mg/m2, d 1, 4, 8, 11; 21 day cycles). A run in phase with nelfinavir monotherapy allowed pharmakokinetic/pharmakodynamic assessment of nelfinavir in the presence or absence of concomittant bortezomib. Endpoints included dose limiting toxicity, activation of the unfolded protein response, proteasome activity, toxicity and response to trial treatment. Nelfinavir 2 x 2500 mg was the recommended phase II dose identified. Nelfinavir alone significantly upregulated expression of proteins related to the unfolded protein response in peripheral blood mononuclear cells and inhibited proteasome activity. Of 10 evaluable patients in the dose escalation cohort, 3 achieved a partial response, 4 stable disease for ≥ 2 cycles, while 3 had progressive disease as best response. In an exploratory extension cohort with 6 relapsed, bortezomib-refractory, lenalidomide-resistant myeloma patients treated at the recommended phase II dose, 3 reached a partial response, 2 a minor response and one progressive disease. The combination of nelfinavir with bortezomib is safe and shows promising signals for activity in advanced, bortezomib-refractory MM. Induction of the unfolded protein response by nelfinavir may overcome the biological features of proteasome inhibitor resistance. (Trial registration NCT01164709).
Resumo:
The plasma membrane constitutes a barrier that maintains the essential differences between the cytosol and the extracellular environment. Plasmalemmal injury is a common event during the life of many cells that often leads to their premature, necrotic death. Blebbing - a display of plasmalemmal protrusions - is a characteristic feature of injured cells. In this study, we disclose a previously unknown role for blebbing in furnishing resistance to plasmalemmal injury. Blebs serve as precursors for injury-induced intracellular compartments that trap damaged segments of the plasma membrane. Hence, loss of cytosol and the detrimental influx of extracellular constituents are confined to blebs that are sealed off from the cell body by plugs of annexin A1 - a Ca(2+)- and membrane-binding protein. Our findings shed light on a fundamental process that contributes to the survival of injured cells. By targeting annexin A1/blebbing, new therapeutic approaches could be developed to avert the necrotic loss of cells in a variety of human pathologies.
Resumo:
The outer membrane protein M35 of Moraxella catarrhalis is an antigenically conserved porin. Knocking out M35 significantly increases the MICs of aminopenicillins. The aim of this study was to determine the biological mechanism of this potentially new antimicrobial resistance mechanism of M. catarrhalis and the behaviour of M35 in general stress situations.
Resumo:
OBJECTIVE: The associations between inflammation, diabetes and insulin resistance remain controversial. Hence, we assessed the associations between diabetes, insulin resistance (using HOMA-IR) and metabolic syndrome with the inflammatory markers high sensitivity C-reactive protein (hs-CRP), interleukin-1beta (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α). DESIGN: CROSS-SECTIONAL STUDY: PARTICIPANTS: 2884 MEN AND 3201 WOMEN AGED 35 TO 75: METHODS: CRP was assessed by immunoassay and cytokines by multiplexed flow cytometric assay. In a subgroup of 532 participants an oral glucose tolerance test was performed to screen for impaired glucose tolerance (IGT). RESULTS: IL-6, TNF-α and hs-CRP were significantly and positively correlated with fasting plasma glucose, insulin and HOMA-IR. Participants with diabetes had higher IL-6, TNF-α and hs-CRP levels than participants without diabetes; this difference persisted for hs-CRP after multivariate adjustment. Participants with metabolic syndrome had increased IL-6, TNF-α and hs-CRP levels; these differences persisted after multivariate adjustment. Participants in the highest quartile of HOMA-IR had increased IL-6, TNF-α and hs-CRP levels; these differences persisted for TNF-α and hs-CRP after multivariate adjustment. No association was found between IL-1β levels and all diabetes and insulin resistance markers studied. Finally, participants with IGT had higher hs-CRP levels than participants with a normal OGTT, but this difference disappeared after controlling for body mass index (BMI). CONCLUSION: subjects with diabetes, metabolic syndrome and increased insulin resistance present with increased levels of IL6, TNF-α and hs-CRP, while no association was found with IL-1β. The increased inflammatory state of subjects with IGT is partially explained by increased BMI. © 2012 Blackwell Publishing Ltd.
Resumo:
Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.
Resumo:
A novel streptogramin A, pleuromutilin, and lincosamide resistance determinant, Vga(E), was identified in porcine methicillin-resistant Staphylococcus aureus (MRSA) ST398. The vga(E) gene encoded a 524-amino-acid protein belonging to the ABC transporter family. It was found on a multidrug resistance-conferring transposon, Tn6133, which was comprised of Tn554 with a stably integrated 4,787-bp DNA sequence harboring vga(E). Detection of Tn6133 in several porcine MRSA ST398 isolates and its ability to circularize suggest a potential for dissemination.
Resumo:
Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.