2 resultados para RER

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tubulo-interstitial fibrosis is a constant feature of chronic renal failure and it is suspected to contribute importantly to the deterioration of renal function. In the fibrotic kidney there exists, besides normal fibroblasts, a large population of myofibroblasts, which are supposedly responsible for the increased production of intercellular matrix. It has been proposed that myofibroblasts in chronic renal failure originate from the transformation of tubular cells via epithelial-mesenchymal transition (EMT) or from infiltration by bone marrow-derived precursors. Little attention has been paid to the possibility of a transformation of resident fibroblasts into myofibroblasts in renal fibrosis. Therefore we examined the fate of resident fibroblasts in the initial phase of renal fibrosis in the classical model of unilateral ureter obstruction (UUO) in the rat. Rats were perfusion-fixed on days 1, 2, 3 and 4 after ligature of the right ureter. Starting from 1 day of UUO an increasing expression of alpha-smooth muscle actin (alphaSMA) in resident fibroblasts was revealed by immunofluorescence and confirmed by the observation of bundles of microfilaments and webs of intermediate filaments in the electron microscope. Inversely, there was a decreased expression of 5'-nucleotidase (5'NT), a marker of renal cortical fibroblasts. The RER became more voluminous, suggesting an increased synthesis of matrix. Intercellular junctions, a characteristic feature of myofibroblasts, became more frequent. The mitotic activity in fibroblasts was strongly increased. Renal tubules underwent severe regressive changes but the cells retained their epithelial characteristics and there was no sign of EMT. In conclusion, after ureter ligature, resident peritubular fibroblasts proliferated and they showed progressive alterations, suggesting a transformation in myofibroblasts. Thus the resident fibroblasts likely play a central role in fibrosis in that model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Robotics-assisted tilt table technology was introduced for early rehabilitation of neurological patients. It provides cyclical stepping movement and physiological loading of the legs. The aim of the present study was to assess the feasibility of this type of device for peak cardiopulmonary performance testing using able-bodied subjects. METHODS: A robotics-assisted tilt table was augmented with force sensors in the thigh cuffs and a work rate estimation algorithm. A custom visual feedback system was employed to guide the subjects' work rate and to provide real time feedback of actual work rate. Feasibility assessment focused on: (i) implementation (technical feasibility), and (ii) responsiveness (was there a measurable, high-level cardiopulmonary reaction?). For responsiveness testing, each subject carried out an incremental exercise test to the limit of functional capacity with a work rate increment of 5 W/min in female subjects and 8 W/min in males. RESULTS: 11 able-bodied subjects were included (9 male, 2 female; age 29.6 ± 7.1 years: mean ± SD). Resting oxygen uptake (O_{2}) was 4.6 ± 0.7 mL/min/kg and O_{2}peak was 32.4 ± 5.1 mL/min/kg; this mean O_{2}peak was 81.1% of the predicted peak value for cycle ergometry. Peak heart rate (HRpeak) was 177.5 ± 9.7 beats/min; all subjects reached at least 85% of their predicted HRpeak value. Respiratory exchange ratio (RER) at O_{2}peak was 1.02 ± 0.07. Peak work rate) was 61.3 ± 15.1 W. All subjects reported a Borg CR10 value for exertion and leg fatigue of 7 or more. CONCLUSIONS: The robotics-assisted tilt table is deemed feasible for peak cardiopulmonary performance testing: the approach was found to be technically implementable and substantial cardiopulmonary responses were observed. Further testing in neurologically-impaired subjects is warranted.