74 resultados para REGULATES PHAGOCYTOSIS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Binding of CD47 to signal regulatory protein alpha (SIRPα), an inhibitory receptor, negatively regulates phagocytosis. In acute myeloid leukemia (AML), CD47 is overexpressed on peripheral blasts and leukemia stem cells and inversely correlates with survival. Aim of the study was to investigate the correlation between CD47 protein expression by immunohistochemistry (IHC) in a bone marrow (BM) tissue microarray (TMA) and clinical outcome in AML patients. CD47 staining on BM leukemia blasts was scored semi-quantitatively and correlated with clinical parameters and known prognostic factors in AML. Low (scores 0-2) and high (score 3) CD47 protein expression were observed in 75% and 25% of AML patients. CD47 expression significantly correlated with percentage BM blast infiltration and peripheral blood blasts. Moreover, high CD47 expression was associated with nucleophosmin (NPM1) gene mutations. In contrast, CD47 expression did not significantly correlate with overall or progression free survival or response to therapy. In summary, a BM TMA permits rapid and reproducible semi-quantitative analysis of CD47 protein expression by IHC. While CD47 expression on circulating AML blasts has been shown to be a negative prognostic marker for a very defined population of AML patients with NK AML, CD47 expression on AML BM blasts is not.
Resumo:
The tight regulation of granulocyte chemotaxis is crucial for initiation and resolution of inflammation. Here, we show that DAPK2, a Ca(2+)/CaM-sensitive serine/threonine kinase known to modulate cell death in various cell types, is a novel regulator of migration in granulocytes. We demonstrate that human neutrophils and eosinophils express DAPK2 but unlike other leukocytes, no DAPK1 or DAPK3 protein. When DAPK activities were blocked by inhibitors, we found that neither granulocyte lifespan nor phagocytosis was affected. However, such pharmacological inactivation of DAPK activity abolished motility of granulocytes in response to intermediary but not end-target chemoattractants ex vivo. The defect in chemotaxis in DAPK2-inactive granulocytes is likely a result of reduced polarization of the cells, mediated by a lack of MLC phosphorylation, resulting in radial F-actin and pseudopod formation. As neutrophils treated with DAPKi also showed reduced recruitment to the site of inflammation in a mouse peritonitis model, DAPK2 may be a novel target for anti-inflammatory therapies.
Resumo:
During sepsis, activation of phagocytes leads to the overproduction of proinflammatory cytokines, causing systemic inflammation. Despite substantial information regarding the underlying molecular mechanisms that lead to sepsis, several elements in the pathway remain to be elucidated. We found that the enzyme sphingosine kinase 1 (SphK1) is up-regulated in stimulated human phagocytes and in peritoneal phagocytes of patients with severe sepsis. Blockade of SphK1 inhibited phagocyte production of endotoxin-induced proinflammatory cytokines. We observed protection against sepsis in mice treated with a specific SphK1 inhibitor that was enhanced by treatment with a broad-spectrum antibiotic. These results demonstrated a critical role for SphK1 in endotoxin signaling and sepsis-induced inflammatory responses and suggest that inhibition of SphK1 is a potential therapy for septic shock.
Resumo:
CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.
Resumo:
The phosphorylation state and corresponding activity of the retinoblastoma tumor suppressor protein (Rb) are modulated by a balance of kinase and phosphatase activities. Here we characterize the association of Rb with the catalytic subunit of protein phosphatase 1 (PP1c). A crystal structure identifies an enzyme docking site in the Rb C-terminal domain that is required for efficient PP1c activity toward Rb. The phosphatase docking site overlaps with the known docking site for cyclin-dependent kinase (Cdk), and PP1 competition with Cdk-cyclins for Rb binding is sufficient to retain Rb activity and block cell-cycle advancement. These results provide the first detailed molecular insights into Rb activation and establish a novel mechanism for Rb regulation in which kinase and phosphatase compete for substrate docking.
Resumo:
In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.
Resumo:
The transcription factor IRF4 is involved in several T-cell-dependent chronic inflammatory diseases. To elucidate the mechanisms for pathological cytokine production in colitis, we addressed the role of the IRF transcription factors in human inflammatory bowel disease (IBD) and experimental colitis.
Resumo:
As deregulation of miRNAs and chemokine CCL20 was shown to play a role in colorectal cancer (CRC) pathogenesis, we analyzed the functional interactions of candidate miRNAs with CCL20 mRNA. After target prediction software programs indicated a role for miR-21 in CCL20 regulation, we applied the luciferase reporter assay system to demonstrate that miR-21 functionally interacts with the 3'UTR of CCL20 mRNA and down-regulates CCL20 in miR-21 mimic transfected CRC cell lines (Caco-2, SW480 and SW620). Thus, regulation of CCL20 expression by miR-21 might be a regulatory mechanism involved in progression of CRC.
Resumo:
The pathway of copper entry into Escherichia coli is still unknown. In an attempt to shed light on this process, a lux-based biosensor was utilized to monitor intracellular copper levels in situ. From a transposon-mutagenized library, strains were selected in which copper entry into cells was reduced, apparent as clones with reduced luminescence when grown in the presence of copper (low-glowers). One low-glower had a transposon insertion in the comR gene, which encodes a TetR-like transcriptional regulator. The mutant strain could be complemented by the comR gene on a plasmid, restoring luminescence to wild-type levels. ComR did not regulate its own expression, but was required for copper-induction of the neighboring, divergently transcribed comC gene, as shown by real-time quantitative PCR and with a promoter-lux fusion. The purified ComR regulator bound to the promoter region of the comC gene in vitro and was released by copper. By membrane fractionation, ComC was shown to be localized in the outer membrane. When grown in the presence of copper, ∆comC cells had higher periplasmic and cytoplasmic copper levels, compared to the wild-type, as assessed by the activation of the periplasmic CusRS sensor and the cytoplasmic CueR sensor, respectively. Thus, ComC is an outer membrane protein which lowers the permeability of the outer membrane to copper. The expression of ComC is controlled by ComR, a novel, TetR-like copper-responsive repressor.
Resumo:
Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence.
Resumo:
Previous findings in rats and in human vegetarians suggest that the plasma carnitine concentration and/or carnitine ingestion may influence the renal reabsorption of carnitine. We tested this hypothesis in rats with secondary carnitine deficiency following treatment with N-trimethyl-hydrazine-3-propionate (THP) for 2 weeks and rats treated with excess L-carnitine for 2 weeks. Compared to untreated control rats, treatment with THP was associated with an approximately 70% decrease in plasma carnitine and with a 74% decrease in the skeletal muscle carnitine content. In contrast, treatment with L-carnitine increased plasma carnitine levels by 80% and the skeletal muscle carnitine content by 50%. Treatment with L-carnitine affected neither the activity of carnitine transport into isolated renal brush border membrane vesicles, nor renal mRNA expression of the carnitine transporter OCTN2. In contrast, in carnitine deficient rats, carnitine transport into isolated brush border membrane vesicles was increased 1.9-fold compared to untreated control rats. Similarly, renal mRNA expression of OCTN2 increased by a factor of 1.7 in carnitine deficient rats, whereas OCTN2 mRNA expression remained unchanged in gut, liver or skeletal muscle. Our study supports the hypothesis that a decrease in the carnitine plasma and/or glomerular filtrate concentration increases renal expression and activity of OCTN2.
Resumo:
Defects in urothelial integrity resulting in leakage and activation of underlying sensory nerves are potential causative factors of bladder pain syndrome, a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. Herein, we identified the microRNA miR-199a-5p as an important regulator of intercellular junctions. On overexpression in urothelial cells, it impairs correct tight junction formation and leads to increased permeability. miR-199a-5p directly targets mRNAs encoding LIN7C, ARHGAP12, PALS1, RND1, and PVRL1 and attenuates their expression levels to a similar extent. Using laser microdissection, we showed that miR-199a-5p is predominantly expressed in bladder smooth muscle but that it is also detected in mature bladder urothelium and primary urothelial cultures. In the urothelium, its expression can be up-regulated after activation of cAMP signaling pathways. While validating miR-199a-5p targets, we delineated novel functions of LIN7C and ARHGAP12 in urothelial integrity and confirmed the essential role of PALS1 in establishing and maintaining urothelial polarity and junction assembly. The present results point to a possible link between miR-199a-5p expression and the control of urothelial permeability in bladder pain syndrome. Up-regulation of miR-199a-5p and concomitant down-regulation of its multiple targets might be detrimental to the establishment of a tight urothelial barrier, leading to chronic pain.
Resumo:
Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.