10 resultados para REFRACTIVE-INDEX PROFILES
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We introduce a new fiber-optical approach for reflection based refractive index mapping. Our approach leads to improved stability and reliability over existing free-space confocal instruments and significantly cuts alignment efforts and reduces the number of components needed. Other than properly cleaved fiber end-faces, this setup requires no additional sample preparation. The instrument is calibrated by means of a set of samples with known refractive indices. The index steps of commercially available fibers are measured accurately down to < 10⁻³. The precision limit of the instrument is currently of the order of 10⁻⁴.
Resumo:
Tissue phantoms play a central role in validating biomedical imaging techniques. Here we employ a series of methods that aim to fully determine the optical properties, i.e., the refractive index n, absorption coefficient μa, transport mean free path ℓ∗, and scattering coefficient μs of a TiO2 in gelatin phantom intended for use in optoacoustic imaging. For the determination of the key parameters μa and ℓ∗, we employ a variant of time of flight measurements, where fiber optodes are immersed into the phantom to minimize the influence of boundaries. The robustness of the method was verified with Monte Carlo simulations, where the experimentally obtained values served as input parameters for the simulations. The excellent agreement between simulations and experiments confirmed the reliability of the results. The parameters determined at 780 nm are n=1.359(±0.002), μ′s=1/ℓ∗=0.22(±0.02) mm-1, μa= 0.0053(+0.0006-0.0003) mm-1, and μs=2.86(±0.04) mm-1. The asymmetry parameter g obtained from the parameters ℓ∗ and μ′s is 0.93, which indicates that the scattering entities are not bare TiO2 particles but large sparse clusters. The interaction between the scattering particles and the gelatin matrix should be taken into account when developing such phantoms.
Resumo:
Here, we demonstrate the use of a colloidal CdSe:Te quantum dots suspension as active liquid-core in a specially designed optical element, based on a double-clad optical fiber structure. The liquid-core fiber was realized by filling the hollow core of a capillary and waveguiding of the core was ensured by using a liquid host that exhibits a larger refractive index than the cladding material of the capillary. Since the used capillary possessed a cladding waveguide structure, we obtained a liquid-core double-clad structure. To seal the liquid-core fiber and e.g. prevent the formation of bubbles, we developed a technique based on SMA connectors. The colloidal CdSe:Te quantum dots were excited by cladding-pumping using a pump laser at 532nm operating in the continuous-wave regime. We investigated the photoluminescence emitted from the colloidal CdSe:Te quantum dots suspension liquid-core and guided by the double-clad fiber structure. We observed a red shift of the (core) emission, that depends on the liquid-core fiber length and the pump power. This shift is due to the absorption of unexcited colloidal quantum dots and due to the waveguiding properties of the core. Here we report a core photoluminescence output power of 79.2μW (with an integrated brightness of ≈ 215.5 W/cm2sr ). Finally, we give an explanation, why lasing could not be observed in our experiments when setup as a liquid-core fiber cavity.
Resumo:
We have recently developed a method to obtain distributed atomic polarizabilities adopting a partitioning of the molecular electron density (for example, the Quantum Theory of Atoms in Molecules, [1]), calculated with or without an applied electric field. The procedure [2] allows to obtained atomic polarizability tensors, which are perfectly exportable, because quite representative of an atom in a given functional group. Among the many applications of this idea, the calculation of crystal susceptibility is easily available, either from a rough estimation (the polarizability of the isolated molecule is used) or from a more precise estimation (the polarizability of a molecule embedded in a cluster representing the first coordination sphere is used). Lorentz factor is applied to include the long range effect of packing, which is enhancing the molecular polarizability. Simple properties like linear refractive index or the gyration tensor can be calculated at relatively low costs and with good precision. This approach is particularly useful within the field of crystal engineering of organic/organometallic materials, because it would allow a relatively easy prediction of a property as a function of the packing, thus allowing "reverse crystal engineering". Examples of some amino acid crystals and salts of amino acids [3] will be illustrated, together with other crystallographic or non-crystallographic applications. For example, the induction and dispersion energies of intermolecular interactions could be calculated with superior precision (allowing anisotropic van der Waals interactions). This could allow revision of some commonly misunderstood intermolecular interactions, like the halogen bonding (see for example the recent remarks by Stone or Gilli [4]). Moreover, the chemical reactivity of coordination complexes could be reinvestigated, by coupling the conventional analysis of the electrostatic potential (useful only in the circumstances of hard nucleophilic/electrophilic interaction) with the distributed atomic polarizability. The enhanced reactivity of coordinated organic ligands would be better appreciated. [1] R. F. W. Bader, Atoms in Molecules: A Quantum Theory. Oxford Univ. Press, 1990. [2] A. Krawczuk-Pantula, D. Pérez, K. Stadnicka, P. Macchi, Trans. Amer. Cryst. Ass. 2011, 1-25 [3] A. S. Chimpri1, M. Gryl, L. H.R. Dos Santos1, A. Krawczuk, P. Macchi Crystal Growth & Design, in the press. [4] a) A. J. Stone, J. Am. Chem. Soc. 2013, 135, 7005−7009; b) V. Bertolasi, P. Gilli, G. Gilli Crystal Growth & Design, 2013, 12, 4758-4770.
Resumo:
We show that a single-layer antireflection coating on a THz source of high refractive index can substantially increase the transmission of emitted THz pulses. Calculations indicate that the optimum coating thickness depends on the exact shape of the generated THz waveform and whether the transmitted waveform is to be optimized for the highest peak (temporal) amplitude, peak spectral amplitude, or pulse energy. We experimentally demonstrate a 15% increase in peak amplitude, a 33% increase in peak spectral amplitude, and a 48% increase in energy for a 100 μm thick fused silica AR coating on a lithium niobate crystal used as THz emitter.
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
The differential safety and efficacy profiles of sirolimus-eluting stents when implanted in patients with multivessel coronary artery disease who have increased body mass indexes (BMIs) compared with those with normal BMIs are largely unknown. This study evaluated the impact of BMI on 1-year outcomes in patients with multivessel coronary artery disease treated with sirolimus-eluting stents as part of the Arterial Revascularization Therapies Study Part II (ARTS II). From February to November 2003, 607 patients were included at 45 centers; 176 patients had normal BMIs (<25 kg/m(2)), 289 were overweight (> or =25 and < or =30 kg/m(2)), and 142 were obese (>30 kg/m(2)). At 30 days, the cumulative incidence of the primary combined end point of death, myocardial infarction, cerebrovascular accident, and repeat revascularization (major adverse cardiac and cerebrovascular events) was 3.4% in the group with normal BMIs, 3.1% in overweight patients, and 2.8% in obese patients (p = 0.76). At 1 year, the cumulative incidence of major adverse cardiac and cerebrovascular events was 10.8%, 11.8%, and 7.0% in the normal BMI, overweight, and obese groups, respectively (p = 0.31). In conclusion, BMI had no impact on 1-year clinical outcomes in patients with multivessel coronary artery disease treated with sirolimus-eluting stents in ARTS II.
Resumo:
Aim of the study Due to the valuable contribution made by volunteers to sporting events, a better understanding of volunteers’ motivation is imperative for event managers in order to develop effective volunteer re-cruitment and retention strategies. The adoption of working conditions and task domains to the mo-tives and needs of volunteers is one of the key challenges in volunteer management. Conversely, an ignorance of the motives and needs of volunteers could negatively affect their performance and attitude, which will have negative consequences for the execution of events (Strigas & Jackson, 2003). In general, the motives of volunteers are located on a continuum between selflessness (e.g. helping others), and self-interest (e.g. pursuing one’s own interests). Furthermore, it should take into account that volunteers may be motivated by more than one need or goal, and therefore, configure different bundles of motives, resulting in heterogeneous types of motives for voluntary engagement (Dolnicar & Randle, 2007). Despite the extensive number of studies on the motives of sport event volunteers, only few studies focus on the analysis of individual motive profiles concerning volun-teering. Accordingly, we will take a closer look at the following questions: To what extent do volun-teers at sporting events differ in the motives of their engagement, and how can the volunteers be ade-quately classified? Theoretical Background According to the functional approach, relevant subjective motives are related to the outcomes and consequences that volunteering is supposed to lead to and to produce. This means, individuals’ mo-tives determine which incentives are anticipated in return for volunteering (e.g. increase in social contacts), and are important for engaging in volunteering, e.g. the choice between different oppor-tunities for voluntary activity, or different tasks (Stukas et al., 2009). Additionally, inter-individual differences of motive structures as well as matching motives in the reflections of voluntary activities will be considered by using a person-oriented approach. In the person-oriented approach, it is not the specific variables that are made the entities of investigation, but rather persons with a certain combination of characteristic features (Bergmann et al., 2003). Person-orientation in the field of sports event volunteers, it is therefore essential to implement an orientation towards people as a unit of analysis. Accordingly, individual motive profiles become the object of investigation. The individ-ual motive profiles permit a glimpse of intra-individual differences in the evaluation of different motive areas, and thus represent the real subjective perspective. Hence, a person will compare the importance of individual motives for his behaviour primarily in relation to other motives (e.g. social contacts are more important to me than material incentives), and make fewer comparisons with the assessments of other people. Methodology, research design and data analysis The motives of sports event volunteers were analysed in the context of the European Athletics Championships 2014 in Zürich. After data cleaning, the study sample contained a total of 1,169 volunteers, surveyed by an online questionnaire. The VMS-ISA scale developed by Bang and Chel-ladurai (2009) was used and replicated successfully by a confirmatory factor analysis. Accordingly, all seven factors of the scale were included in the subsequent cluster analysis to determine typical motive profiles of volunteers. Before proceeding with the cluster analysis, an intra-individual stand-ardization procedure (according to Spiel, 1998) was applied to take advantage of the intra-individual relationships between the motives of the volunteers. Intra-individual standardization means that every value of each motive dimension was related to the average individual level of ex-pectations. In the final step, motive profiles were determined using a hierarchic cluster analysis based on Ward’s method with squared Euclidean distances. Results, discussion and implications The results reveal that motivational processes differ among sports event volunteers, and that volunteers sometimes combine contradictory bundles of motives. In our study, four different volunteer motive profiles were identified and described by their positive levels on the individual motive dimension: the community supporters, the material incentive seekers, the social networkers, and the career and personal growth pursuers. To describe the four identified motive profiles in more detail and to externally validate them, the clusters were analysed in relation to socio-economic, sport-related, and voluntary work characteristics. This motive-based typology of sports event volunteers can provide valuable guidance for event managers in order to create distinctive and designable working conditions and tasks at sporting events that should, in relation to a person-oriented approach, be tailored to a wide range of individ-ual prerequisites. Furthermore, specific recruitment procedures and appropriate communication measures can be defined in order to approach certain groups of potential volunteers more effectively. References Bang, H., & Chelladurai, P. (2009). Development and validation of the volunteer motivations scale for international sporting events (VMS-ISE). International Journal Sport Management and Market-ing, 6, 332-350. Bergmann, L. R., Magnusson, D., & El-Khouri, B. M. (2003). Studying individual development in an interindividual context. Mahwah, NJ: Erlbaum. Dolnicar, S., & Randle, M. (2007). What motivates which volunteers? Psychographic heterogeneity among volunteers in Australia. Voluntas, 18, 135-155. Spiel, C. (1998). Four methodological approaches to the study of stability and change in develop-ment. Methods of Psychological Research Online, 3, 8-22. Stukas, A. A., Worth, K. A., Clary, E. G., & Snyder, M. (2009). The matching of motivations to affordances in the volunteer environment: an index for assessing the impact of multiple matches on volunteer outcomes. Nonprofit and Voluntary Sector Quarterly, 38, 5-28.
Resumo:
We present studies of 9 modern (up to 400-yr-old) peat sections from Slovenia, Switzerland, Austria, Italy, and Finland. Precise radiocarbon dating of modern samples is possible due to the large bomb peak of atmospheric 14C concentration in 1963 and the following rapid decline in the 14C level. All the analyzed 14C profiles appeared concordant with the shape of the bomb peak of atmospheric 14C concentration, integrated over some time interval with a length specific to the peat section. In the peat layers covered by the bomb peak, calendar ages of individual peat samples could be determined almost immediately, with an accuracy of 23 yr. In the pre-bomb sections, the calendar ages of individual dated samples are determined in the form of multi-modal probability distributions of about 300 yr wide (about AD 16501950). However, simultaneous use of the post-bomb and pre-bomb 14C dates, and lithological information, enabled the rejection of most modes of probability distributions in the pre-bomb section. In effect, precise age-depth models of the post-bomb sections have been extended back in time, into the wiggly part of the 14C calibration curve.