20 resultados para READOUT

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ARGONTUBE is a liquid argon time projection chamber (TPC) with an electron drift length of up to 5 m equipped with cryogenic charge-sensitive preamplifiers. In this work, we present results on its performance, including a comparison of the new cryogenic charge-sensitive preamplifiers with the previously used room-temperature-operated charge preamplifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Readout-segmented echo planar imaging (rs-EPI) significantly reduces susceptibility artifacts in diffusion-weighted imaging (DWI) of the breast compared to single-shot EPI but is limited by longer scan times. To compensate for this, we tested a new simultaneous multi-slice (SMS) acquisition for accelerated rs-EPI. MATERIALS AND METHODS After approval by the local ethics committee, eight healthy female volunteers (age, 38.9±13.1 years) underwent breast MRI at 3T. Conventional as well as two-fold (2× SMS) and three-fold (3× SMS) slice-accelerated rs-EPI sequences were acquired at b-values of 50 and 800s/mm(2). Two independent readers analyzed the apparent diffusion coefficient (ADC) in fibroglandular breast parenchyma. The signal-to-noise ratio (SNR) was estimated based on the subtraction method. ADC and SNR were compared between sequences by using the Friedman test. RESULTS The acquisition time was 4:21min for conventional rs-EPI, 2:35min for 2× SMS rs-EPI and 1:44min for 3× SMS rs-EPI. ADC values were similar in all sequences (mean values 1.62×10(-3)mm(2)/s, p=0.99). Mean SNR was 27.7-29.6, and no significant differences were found among the sequences (p=0.83). CONCLUSION SMS rs-EPI yields similar ADC values and SNR compared to conventional rs-EPI at markedly reduced scan time. Thus, SMS excitation increases the clinical applicability of rs-EPI for DWI of the breast.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagnosis of drug hypersensitivity relies on history, skin tests, in vitro tests and provocation tests. In vitro tests are of great interest, due to possible reduction of drug provocation tests. In this review we focus on best investigated in vitro techniques for the diagnosis of T cell-mediated drug hypersensitivity reactions. As drug hypersensitivity relies on different pathomechanisms and as a single diagnostic test usually does not cover all possible reactions, it is advisable to combine different tests to increase the overall sensitivity. Recently, proliferation-based assays have been supplemented by a panel of novel in vitro tests including analysis of cytotoxic potential of effector cells (granzyme B, granulysin, CD107a), evaluation of cytokine secretion (IL-2, IL-5, IL-13, and IFN-γ) and up-regulation of cell surface activation markers (CD69). We discuss the latest findings and readout systems to identify causative drugs by detecting functional and phenotypic markers of drug-reacting cells, and their ability to enable a more conclusive diagnosis of drug allergy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the major challenges for a mission to the Jovian system is the radiation tolerance of the spacecraft (S/C) and the payload. Moreover, being able to achieve science observations with high signal to noise ratios (SNR), while passing through the high flux radiation zones, requires additional ingenuity on the part of the instrument provider. Consequently, the radiation mitigation is closely intertwined with the payload, spacecraft and trajectory design, and requires a systems-level approach. This paper presents a design for the Io Volcano Observer (IVO), a Discovery mission concept that makes multiple close encounters with Io while orbiting Jupiter. The mission aims to answer key outstanding questions about Io, especially the nature of its intense active volcanism and the internal processes that drive it. The payload includes narrow-angle and wide-angle cameras (NAC and WAC), dual fluxgate magnetometers (FGM), a thermal mapper (ThM), dual ion and neutral mass spectrometers (INMS), and dual plasma ion analyzers (PIA). The radiation mitigation is implemented by drawing upon experiences from designs and studies for missions such as the Radiation Belt Storm Probes (RBSP) and Jupiter Europa Orbiter (JEO). At the core of the radiation mitigation is IVO's inclined and highly elliptical orbit, which leads to rapid passes through the most intense radiation near Io, minimizing the total ionizing dose (177 krads behind 100 mils of Aluminum with radiation design margin (RDM) of 2 after 7 encounters). The payload and the spacecraft are designed specifically to accommodate the fast flyby velocities (e.g. the spacecraft is radioisotope powered, remaining small and agile without any flexible appendages). The science instruments, which collect the majority of the high-priority data when close to Io and thus near the peak flux, also have to mitigate transient noise in their detectors. The cameras use a combination of shielding and CMOS detectors with extremely fast readout to mi- imize noise. INMS microchannel plate detectors and PIA channel electron multipliers require additional shielding. The FGM is not sensitive to noise induced by energetic particles and the ThM microbolometer detector is nearly insensitive. Detailed SNR calculations are presented. To facilitate targeting agility, all of the spacecraft components are shielded separately since this approach is more mass efficient than using a radiation vault. IVO uses proven radiation-hardened parts (rated at 100 krad behind equivalent shielding of 280 mils of Aluminum with RDM of 2) and is expected to have ample mass margin to increase shielding if needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methodological evaluation of the proteomic analysis of cardiovascular-tissue material has been performed with a special emphasis on establishing examinations that allow reliable quantitative analysis of silver-stained readouts. Reliability, reproducibility, robustness and linearity were addressed and clarified. In addition, several types of normalization procedures were evaluated and new approaches are proposed. It has been found that the silver-stained readout offers a convenient approach for quantitation if a linear range for gel loading is defined. In addition, a broad range of a 10-fold input (loading 20-200 microg per gel) fulfills the linearity criteria, although at the lowest input (20 microg) a portion of protein species will remain undetected. The method is reliable and reproducible within a range of 65-200 microg input. The normalization procedure using the sum of all spot intensities from a silver-stained 2D pattern has been shown to be less reliable than other approaches, namely, normalization through median or through involvement of interquartile range. A special refinement of the normalization through virtual segmentation of pattern, and calculation of normalization factor for each stratum provides highly satisfactory results. The presented results not only provide evidence for the usefulness of silver-stained gels for quantitative evaluation, but they are directly applicable to the research endeavor of monitoring alterations in cardiovascular pathophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commercially available LaBr3:5% Ce3+ scintillators show with photomultiplier tube readout about 2.7% energy resolution for the detection of 662 keV γ-rays. Here we will show that by co-doping LaBr3:Ce3+ with Sr2+ or Ca2+ the resolution is improved to 2.0%. Such an improvement is attributed to a strong reduction of the scintillation light losses that are due to radiationless recombination of free electrons and holes during the earliest stages (1–10 ps) inside the high free charge carrier density parts of the ionization track.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CMOS-sensors, or in general Active Pixel Sensors (APS), are rapidly replacing CCDs in the consumer camera market. Due to significant technological advances during the past years these devices start to compete with CCDs also for demanding scientific imaging applications, in particular in the astronomy community. CMOS detectors offer a series of inherent advantages compared to CCDs, due to the structure of their basic pixel cells, which each contains their own amplifier and readout electronics. The most prominent advantages for space object observations are the extremely fast and flexible readout capabilities, feasibility for electronic shuttering and precise epoch registration,and the potential to perform image processing operations on-chip and in real-time. Here, the major challenges and design drivers for ground-based and space-based optical observation strategies for objects in Earth orbit have been analyzed. CMOS detector characteristics were critically evaluated and compared with the established CCD technology, especially with respect to the above mentioned observations. Finally, we simulated several observation scenarios for ground- and space-based sensor by assuming different observation and sensor properties. We will introduce the analyzed end-to-end simulations of the ground- and spacebased strategies in order to investigate the orbit determination accuracy and its sensitivity which may result from different values for the frame-rate, pixel scale, astrometric and epoch registration accuracies. Two cases were simulated, a survey assuming a ground-based sensor to observe objects in LEO for surveillance applications, and a statistical survey with a space-based sensor orbiting in LEO observing small-size debris in LEO. The ground-based LEO survey uses a dynamical fence close to the Earth shadow a few hours after sunset. For the space-based scenario a sensor in a sun-synchronous LEO orbit, always pointing in the anti-sun direction to achieve optimum illumination conditions for small LEO debris was simulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies in the field of cell-based cartilage repair have focused on identifying markers associated with the differentiation status of human articular chondrocytes (HAC) that could predict their chondrogenic potency. A previous study from our group showed a correlation between the expression of S100 protein in HAC and their chondrogenic potential. The aims of the current study were to clarify which S100 proteins are associated with HAC differentiation status and to provide an S100-based assay for measuring HAC chondrogenic potential. The expression patterns of S100A1 and S100B were investigated in cartilage and in HAC cultured under conditions promoting dedifferentiation (monolayer culture) or redifferentiation (pellet culture or BMP4 treatment in monolayer culture), using characterized antibodies specifically recognizing S100A1 and S100B, by immunohistochemistry, immunocytochemistry, Western blot, and gene expression analysis. S100A1 and S100B were expressed homogeneously in all cartilage zones, and decreased during dedifferentiation. S100A1, but not S100B, was re-expressed in pellets and co-localized with collagen II. Gene expression analysis revealed concomitant modulation of S100A1, S100B, collagen type II, and aggrecan: down-regulation during monolayer culture and up-regulation upon BMP4 treatment. These results strongly support an association of S100A1, and to a lesser extent S100B, with the HAC differentiated phenotype. To facilitate their potential application, we established an S100A1/B-based flow cytometry assay for accurate assessment of HAC differentiation status. We propose S100A1 and S100B expression as a marker to develop potency assays for cartilage regeneration cell therapies, and as a redifferentiation readout in monolayer cultures aiming to investigate stimuli for chondrogenic induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The currently proposed space debris remediation measures include the active removal of large objects and “just in time” collision avoidance by deviating the objects using, e.g., ground-based lasers. Both techniques require precise knowledge of the attitude state and state changes of the target objects. In the former case, to devise methods to grapple the target by a tug spacecraft, in the latter, to precisely propagate the orbits of potential collision partners as disturbing forces like air drag and solar radiation pressure depend on the attitude of the objects. Non-resolving optical observations of the magnitude variations, so-called light curves, are a promising technique to determine rotation or tumbling rates and the orientations of the actual rotation axis of objects, as well as their temporal changes. The 1-meter telescope ZIMLAT of the Astronomical Institute of the University of Bern has been used to collect light curves of MEO and GEO objects for a considerable period of time. Recently, light curves of Low Earth Orbit (LEO) targets were acquired as well. We present different observation methods, including active tracking using a CCD subframe readout technique, and the use of a high-speed scientific CMOS camera. Technical challenges when tracking objects with poor orbit redictions, as well as different data reduction methods are addressed. Results from a survey of abandoned rocket upper stages in LEO, examples of abandoned payloads and observations of high area-to-mass ratio debris will be resented. Eventually, first results of the analysis of these light curves are provided.