45 resultados para RAT STRIATAL NEURONS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.
Resumo:
Nitric oxide (NO) mediates a variety of physiological functions in the central nervous system and acts as an important developmental regulator. Striatal interneurons expressing neuronal nitric oxide synthase (nNOS) have been described to be relatively spared from the progressive cell loss in Huntington's disease (HD). We have recently shown that creatine, which supports the phosphagen energy system, induces the differentiation of GABAergic cells in cultured striatal tissue. Moreover, neurotrophin-4/5 (NT-4/5) has been found to promote the survival and differentiation of cultured striatal neurons. In the present study, we assessed the effects of creatine and NT-4/5 on nNOS-immunoreactive (-ir) neurons of E14 rat ganglionic eminences grown for 1 week in culture. Chronic administration of creatine [5mM], NT-4/5 [10ng/ml], or a combination of both factors significantly increased numbers of nNOS-ir neurons. NT-4/5 exposure also robustly increased levels of nNOS protein. Interestingly, only NT-4/5 and combined treatment significantly increased general viability but no effects were seen for creatine supplementation alone. In addition, NT-4/5 and combined treatment resulted in a significant larger soma size and number of primary neurites of nNOS-ir neurons while creatine administration alone exerted no effects. Double-immunolabeling studies revealed that all nNOS-ir cells co-localized with GABA. In summary, our findings suggest that creatine and NT-4/5 affect differentiation and/or survival of striatal nNOS-ir GABAergic interneurons. These findings provide novel insights into the biology of developing striatal neurons and highlight the potential of both creatine and NT-4/5 as therapeutics for HD.
Resumo:
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.
Resumo:
Although the physiological and pharmacological evidences suggest a role for angiotensin II (Ang II) with the mammalian heart, the source and precise location of Ang II are unknown. To visualize and quantitate Ang II in atria, ventricular walls and interventricular septum of the rat and human heart and to explore the feasibility of local Ang II production and function, we investigated by different methods the expression of proteins involved in the generation and function of Ang II. We found mRNA of angiotensinogen (Ang-N), of angiotensin converting enzyme, of the angiotensin type receptors AT(1A) and AT(2) (AT(1B) not detected) as well as of cathepsin D in any part of the hearts. No renin mRNA was traceable. Ang-N mRNA was visualized by in situ hybridization in atrial ganglial neurons. Ang II and dopamine- -hydroxylase (D H) were either colocalized inside the same neuronal cell or the neurons were specialized for Ang II or D H. Within these neurons, the vesicular acetylcholine transporter (VAChT) was neither colocalized with Ang II nor D H, but VAChT-staining was found with synapses en passant encircle these neuronal cells. The fibers containing Ang II exhibited with blood vessels and with cardiomyocytes supposedly angiotensinergic synapses en passant. In rat heart, right atrial median Ang II concentration appeared higher than septal and ventricular Ang II. The distinct colocalization of neuronal Ang II with D H in the heart may indicate that Ang II participates together with norepinephrine in the regulation of cardiac functions: Produced as a cardiac neurotransmitter Ang II may have inotropic, chronotropic or dromotropic effects in atria and ventricles and contributes to blood pressure regulation.
Dopaminergic Nogo-A expressing neurons are preferentially lost in a rat model of Parkinson`s disease
Resumo:
Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.
Resumo:
The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.