8 resultados para RAPID SYNTHESIS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To assess the presence or absence of lags in biotic responses to rapid climatic changes, we: (1) assume that the δ18O in biogenically precipitated carbonates record global or hemispheric climatic change at the beginning and at the end of the Younger Dryas without any lag at our two study sites of Gerzensee and Leysin, Switzerland; (2) derive a time scale by correlating the δ18O record from these two sites with the δ18O record of the GRIP ice core; (3) measure δ18O records in ostracods and molluscs to check the record in the bulk samples and to detect possible hydrological changes; (4) analyse at Gerzensee and Leysin as well as at two additional sites (that lack carbonates and hence a δ18O record) pollen, plant macrofossils, chironomids, beetles and other insects, and Cladocera; (5) estimate our sampling resolution using the GRIP time scale for the isotope stratigraphies and the biostratigraphies; and (6) summarise the major patterns of compositional change in the biostratigraphies by principal component analysis or correspondence analysis. We conclude that, at the major climatic shifts at the beginning and end of the Younger Dryas, hardly any biotic lags occur (within the sampling resolution of 8–30 years) and that upland vegetation responded as fast as aquatic invertebrates. We suggest that the minor climatic changes associated with the Gerzensee and Preboreal oscillations were weakly recorded in the biostratigraphies at the lowland site, but were more distinct at higher altitudes. Individualistic responses of plant and animal species to climatic change may reflect processes in individuals (e.g. productivity and phenology), in populations (e.g. population dynamics), in spatial distributions (e.g. migrations), and in ecosystems (e.g. trophic state). We suggest that biotic responses may be telescoped together into relatively short periods (50 to 150 years), perhaps disrupting functional interactions among species and thus destabilising ecosystems.
Resumo:
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Resumo:
Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.
Resumo:
This study reviews and synthesizes the present knowledge on the Sesia–Dent Blanche nappes, the highest tectonic elements in the Western Alps (Switzerland and Italy), which comprise pieces of pre-Alpine basement and Mesozoic cover. All of the available data are integrated in a crustal-scale kinematic model with the aim to reconstruct the Alpine tectono-metamorphic evolution of the Sesia–Dent Blanche nappes. Although major uncertainties remain in the pre-Alpine geometry, the basement and cover sequences of the Sesia–Dent Blanche nappes are seen as part of a thinned continental crust derived from the Adriatic margin. The earliest stages of the Alpine evolution are interpreted as recording late Cretaceous subduction of the Adria-derived Sesia–Dent Blanche nappes below the South-Alpine domain. During this subduction, several sheets of crustal material were stacked and separated by shear zones that rework remnants of their Mesozoic cover. The recently described Roisan-Cignana Shear Zone of the Dent Blanche Tectonic System represents such a shear zone, indicating that the Sesia–Dent Blanche nappes represent a stack of several individual nappes. During the subsequent subduction of the Piemonte–Liguria Ocean large-scale folding of the nappe stack (including the Roisan-Cignana Shear Zone) took place under greenschist facies conditions, which indicates partial exhumation of the Dent Blanche Tectonic System. The entrance of the Briançonnais micro-continent within the subduction zone led to a drastic change in the deformation pattern of the Alpine belt, with rapid exhumation of the eclogite-facies ophiolite bearing units and thrust propagation towards the foreland. Slab breakoff probably was responsible for allowing partial melting in the mantle and Oligocene intrusions into the most internal parts of the Sesia–Dent Blanche nappes. Finally, indentation of the Adriatic plate into the orogenic wedge resulted in the formation of the Vanzone back-fold, which marks the end of the pervasive ductile deformation within the Sesia–Dent Blanche nappes during the earliest Miocene.
Resumo:
Basilar artery occlusion (BAO) is one of the most devastating forms of stroke and few patients have good outcomes without recanalization. Most centers apply recanalization therapies for BAO up to 12-24 hours after symptom onset, which is a substantially longer time window than the 4.5 hours used in anterior circulation stroke. In this speculative synthesis, we discuss recent advances in BAO treatment in order to understand why and under which circumstances longer symptom duration might not necrotize the brainstem and turn therapeutic attempts futile. We raise the possibility that distinct features of the posterior circulation, e.g., highly developed, persistent collateral arterial network, reverse filling of the distal basilar artery, and delicate plasma flow siding the clot, might sustain brittle patency of brainstem perforators in the face of stepwise growth of the thrombus. Meanwhile, the tissue clock characterizing the rapid necrosis of a typical anterior circulation penumbra will not start. During this perilous time period, recanalization at any point would salvage the brainstem from eventual necrosis caused by imminent reinforcement and further building up of the clot.
Resumo:
Glutamate is the major excitatory neurotransmitter in the mammalian brain. Its rapid clearance after the release into the synaptic cleft is vital in order to avoid toxic effects and is ensured by several transmembrane transport proteins, so-called excitatory amino acid transporters (EAATs). Impairment of glutamate removal has been linked to several neurodegenerative diseases and EAATs have therefore received increased attention as therapeutic targets. O-benzylated L-threo-β-hydroxyaspartate derivatives have been developed previously as highly potent inhibitors of EAATs with TFB-TBOA ((2S,3S)-2-amino-3-((3-(4-(trifluoromethyl)benzamido)benzyl)oxy)succinic acid) standing out as low-nanomolar inhibitor. We report the stereoselective synthesis of all four stereoisomers of TFB-TBOA in less than a fifth of synthetic steps than the published route. For the first time, the inhibitory activity and isoform selectivity of these TFB-TBOA enantio- and diastereomers were assessed on human glutamate transporters EAAT1-3. Furthermore, we synthesized potent photoaffinity probes based on TFB-TBOA using our novel synthetic strategy.
Resumo:
Qualitative and quantitative changes in fossil flora and fauna have been used in many studies to infer climatic change. Here we ask a different question: how do flora and fauna respond to climatic changes such as rapid warming or cooling? As an independent proxy for paleotemperature we take the ratio of oxygen isotopes in biogenically precipitated lake marl and in ostracod shells. This introductory paper describes the project design and the five sites on an altitudinal transect from 600 m to about 2300 m asl in the western Swiss Alps. As cases of climatic cooling and warming we use the beginning and end of the Younger Dryas as major changes, and the Gerzensee and Preboreal oscillations as minor changes. At the two sites of Gerzensee and Leysin these changes are recorded in stable-isotope ratios, and there the time scales can be derived by correlations to the GRIP ice core (Schwander et al., 2000 and von Grafenstein et al., 2000). Biotic responses to climate changes are treated in individual papers using pollen (Wick, 2000), plant macrofossils (Tobolski and Ammann, 2000), and remains of chironomids (Brooks, 2000), beetles and other insects (Lemdahl, 2000), and chydorid Cladocera (Hofmann, 2000). They are followed by a synthesis focusing on quantification of biotic responses (Ammann et al., 2000). In addition, a reconstruction of summer temperatures for the Allerød and the Younger Dryas at Gerzensee is provided by Lotter et al. (2000).