2 resultados para RAMPS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Non-cage housing systems for laying hens such as aviaries provide greater freedom to perform species-specific behavior and thus are thought to improve welfare of the birds; however, aviaries are associated with a high prevalence of keel bone damage (fractures and deviations), which is a major welfare problem in commercial laying hens. Potential causes of keel bone damage are falls and collisions with internal housing structures that occur as birds move between tiers or perches in the aviary. The aim of this study was to investigate the scope for reducing keel bone damage by reducing falls and collisions through modifications of aviary design. Birds were kept in 20 pens in a laying hen house (225 hens per pen) that were assigned to four different treatments (n = 5 pens per treatment group) including (1) control pens and pens modified by the addition of (2) perches, (3) platforms and (4) ramps. Video recordings at 19, 22, 29, 36 and 43 weeks of age were used to analyze controlled movements and falls (including details on occurrence of collision, cause of fall, height of fall and behavior after fall) during the transitional dusk and subsequent dark phase. Palpation assessments (focusing on fractures and deviations) using 20 focal hens per pen were conducted at 18, 20, 23, 30, 37, 44, 52 and 60 weeks of age. In comparison to the control group, we found 44% more controlled movements in the ramp (P = 0.003) and 47% more controlled movements in the platform treatments (P = 0.014) as well as 45% fewer falls (P = 0.006) and 59% fewer collisions (P < 0.001) in the ramp treatment. There were no significant differences between the control and perch treatments. Also, at 60 weeks of age, 23% fewer fractured keel bones were found in the ramp compared with the control treatment (P = 0.0053). After slaughter at 66 weeks of age, no difference in keel bone damage was found between treatment groups and the prevalence of fractures increased to an average of 86%. As a potential mechanism to explain the differences in locomotion, we suggest that ramps facilitated movement in the vertical plane by providing a continuous path between the tiers and thus supported more natural behavior (i.e. walking and running) of the birds. As a consequence of reducing events that potentially damage keel bones, the installation of ramps may have reduced the prevalence of keel fractures for a major portion of the flock cycle. We conclude that aviary design and installation of specific internal housing structures (i.e. ramps and platforms) have considerable potential to reduce keel bone damage of laying hens in aviary systems.
Resumo:
To improve the understanding of the development of locomotor capacity in layer hens, we measured how female laying hen chicks (n=120) of four different strains (LSL-lite, Hyline Brown, Dekalb White, Lohmann Brown; 3 groups of 10 chicks per line) utilized the ground, the air, elevated horizontal (platforms and perches) and inclined surfaces (ramps and ladders) in an aviary until 9 weeks of age. We used infra-red video recordings to perform all-occurrences sampling of locomotive behavioural and perching events that occurred on the ground—where bedding material, food and water were provided, in the air, and on elevated horizontal and inclined surfaces within weekly 30-min sampling periods. Chicks preferred level ground during the first week of life compared to weeks 5–9 (P<0.0001) and performed 52% of all behavioural events in this section. Elevated surface use began at 2 weeks of age and increased over time (P=0.003), where most behaviour was performed in S2 (45% of all events). Chicks preferred horizontal to inclined surfaces, which were used from weeks 2–5 with maximum use occurring during weeks 2 and 3. Lohmann LSL chicks used the space above the ground most frequently (P=0.05) and performed more aerial ascent/descent behaviour than other lines (P<0.0001). Overall activity levels declined with age (P<0.0001). In summary layer chicks almost exclusively locomoted on the ground but utilized elevated horizontal surfaces (perch, first platform) as early as 2 weeks. These results provide information for improving space use in rearing aviaries by introducing lower perches, platforms and ramps/ladders to accommodate age-dependent locomotor abilities.