16 resultados para RADAR

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pneumothoraces (PTXs) are a common entity in thoracic trauma. Micropower impulse radar (MIR) has been able to detect PTXs in surgical patients. However, this technology has not been tested previously on trauma patients. The purpose of this study was to determine the sensitivity and specificity of MIR to detect clinically significant PTXs. We hypothesized that MIR technology can effectively screen trauma patients for clinically significant PTXs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pneumothoraces are a common injury pattern in emergency medicine. Rapid and safe identification can reduce morbidity and mortality. A new handheld, battery powered device, the Pneumoscan (CE 561036, PneumoSonics Inc., Cleveland, OH, USA), using micropower impulse radar (MIR) technology, has recently been introduced in Europe for the rapid and reliable detection of PTX. However, this technology has not yet been tested in trauma patients. This is the first quality control evaluation to report on emergency room performance of a new device used in the trauma setting. MATERIAL AND METHODS: This study was performed at a Level I trauma centre in Switzerland. All patients with thoracic trauma and undergoing chest X-ray and CT-scan were eligible for the study. Readings were performed before the chest X-ray and CT scan. The patients had eight lung fields tested (four on each side). All readings with the Pneumoscan were performed by two junior residents in our department who had previously received an instructional tutorial of 15min. The qualitative MIR results were blinded, and stored on the device. We then compared the results of the MIR to those of the clinical examination, chest X-ray and CT-scan. RESULTS: 50 patients were included, with a mean age of 46 (SD 17) years. Seven patients presented with PTX diagnosed by CT; six of these were detected by Pneumoscan, leading to an overall sensitivity of 85.7 (95% confidence interval 42.1-99.6)%. Only two of seven PTX were found during clinical examination and on chest X-ray (sensitivity 28.6 (95% CI 3.7-71.0)%). Of the remaining 43 of 50 patients without PTX, one false-positive PTX was found by the Pneumoscan, resulting in a specificity of 97.7 (95% CI 87.7-99.9)%. DISCUSSION: The Pneumoscan is an easy to use handheld technology with reliable results. In this series, the sensitivity to detect a PTX by the Pneumoscan was higher than by clinical examination and chest X-ray. Further studies with higher case numbers and a prospective study design are needed to confirm our findings.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. A nonrecognized pneumothorax (PTX) may become a life-threatening tension PTX. A reliable point-of-care diagnostic tool could help in reduce this risk. For this purpose, we investigated the feasibility of the use of the PneumoScan, an innovative device based on micropower impulse radar (MIR). Patients and Methods. addition to a standard diagnostic protocol including clinical examination, chest X-ray (CXR), and computed tomography (CT), 24 consecutive patients with chest trauma underwent PneumoScan testing in the shock trauma room to exclude a PTX. Results. The application of the PneumoScan was simple, quick, and reliable without functional disorder. Clinical examination and CXR each revealed one and PneumoScan three out of altogether four PTXs (sensitivity 75%, specificity 100%, positive predictive value 100%, and negative predictive value 95%). The undetected PTX did not require intervention. Conclusion. The PneumoScan as a point-of-care device offers additional diagnostic value in patient management following chest trauma. Further studies with more patients have to be performed to evaluate the diagnostic accuracy of the device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an article in the December 2012 issue of The Journal of Trauma and Acute Care Surgery, several author names were misprinted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apollinaris Mons is an isolated volcano on Mars straddling the boundary between the southern highlands and the northern plains. One of its most distinctive features is its massive fan-shaped deposit that extends from a breach on its summit to distances of more than 150 km and drapes its entire southern flank. The composition and formation mechanism of these deposits remains controversial. We investigate the radar properties of the fan deposits (FD) of Apollinaris Mons using low-frequency sounding radar data in combination with high-resolution images and crater-size frequency analysis to constrain their inner shape and bulk composition. Our analysis indicates that the FD attains an irregular thickness and is gradually thinner towards their lateral margins. The crater-size frequency analysis shows that they may have undergone repeated resurfacing, which is suggestive of long-term evolution. Our analysis of Shallow Radar (SHARAD) radargrams traversing different sections of the FD reveals multiple and different subsurface interfaces among the radargrams crossing the thinnest part, which suggests a layered and complex inner shape. Our estimates for the bulk real part of the dielectric constant of the FD ranges from 3 to 5, which is consistent with an icy-silicate mixture or pyroclastic composition. Therefore, we conclude that lahars or pyroclastic flows are the most likely mechanism that created the FD, yet we cannot rule out additional contributions from lava flows. A combination of multiple processes is also possible since the deposits appear to have been modified by fluvial processes at a later stage of their formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a method for rapid identification and precise quantification of slope deformation using a portable radar interferometer. A rockslide with creep-like behavior was identified in the rugged and inaccessible headwaters of the Illgraben debris-flow catchment, located in the Central Swiss Alps. The estimated volume of the moving rock mass was approximately 0.5 x 10(6) m(3) with a maximum daily (3-D) displacement rate of 3 mm. Fast scene acquisition in the order of 6 s/scene led to uniquely precise mapping of spatial and temporal variability of atmospheric phase delay. Observations led to a simple qualitative model for prediction of atmospheric disturbances using a simple model for solar radiation, which can be used for advanced campaign planning for short observation periods (hours to days).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a general workflow for the registration of terrestrial radar interferometric data with 3D point clouds derived from terrestrial photogrammetry and structure from motion. After the determination of intrinsic and extrinsic orientation parameters, data obtained by terrestrial radar interferometry were projected on point clouds and then on the initial photographs. Visualisation of slope deformation measurements on photographs provides an easily understandable and distributable information product, especially of inaccessible target areas such as steep rock walls or in rockfall run-out zones. The suitability and error propagation of the referencing steps and final visualisation of four approaches are compared: (a) the classic approach using a metric camera and stereo-image photogrammetry; (b) images acquired with a metric camera, automatically processed using structure from motion; (c) images acquired with a digital compact camera, processed with structure from motion; and (d) a markerless approach, using images acquired with a digital compact camera using structure from motion without artificial ground control points. The usability of the completely markerless approach for the visualisation of high-resolution radar interferometry assists the production of visualisation products for interpretation.