25 resultados para Récepteur Eph

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.ncbi.nlm.nih.gov/pubmed/22568950

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands (ephrins) are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Both receptors and ligands have been shown to be up-regulated in a variety of tumors. To address the hypothesis that hypoxia is an important regulator of Ephs/ephrins expression, we developed a mouse skin flap model of hypoxia. We demonstrate that our model truly represents segmental skin hypoxia by applying four independent methods: continuous measurement of partial cutaneous oxygen tension, monitoring of tissue lactate/pyruvate ratio, time course of hypoxia-inducible factor-1alpha (HIF-1alpha) induction, and localization of stabilized HIF-1alpha by immunofluorescence in the hypoxic skin flap. Our experiments indicate that hypoxia up-regulates not only HIF-1alpha and vascular endothelial growth factor (VEGF) expression, but also Ephs and ephrins of both A and B subclasses in the skin. In addition, we show that in Hep3B and PC-3 cells, the hypoxia-induced up-regulation of Ephs and ephrins is abrogated by small interfering RNA-mediated down-regulation of HIF-1alpha. These novel findings shed light on the role of this versatile receptor/ligand family in adult angiogenesis. Furthermore, our model offers considerable potential for analyzing distinct mechanisms of neovascularization in gene-targeted mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62(dok), RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62(dok) most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eph family receptor tyrosine kinases signal axonal guidance, neuronal bundling, and angiogenesis; yet the signaling systems that couple these receptors to targeting and cell-cell assembly responses are incompletely defined. Functional links to regulators of cytoskeletal structure are anticipated based on receptor mediated cell-cell aggregation and migratory responses. We used two-hybrid interaction cloning to identify EphB1-interactive proteins. Six independent cDNAs encoding the SH2 domain of the adapter protein, Nck, were recovered in a screen of a murine embryonic library. We mapped the EphB1 subdomain that binds Nck and its Drosophila homologue, DOCK, to the juxtamembrane region. Within this subdomain, Tyr594 was required for Nck binding. In P19 embryonal carcinoma cells, activation of EphB1 (ELK) by its ligand, ephrin-B1/Fc, recruited Nck to native receptor complexes and activated c-Jun kinase (JNK/SAPK). Transient overexpression of mutant EphB1 receptors (Y594F) blocked Nck recruitment to EphB1, attenuated downstream JNK activation, and blocked cell attachment responses. These findings identify Nck as an important intermediary linking EphB1 signaling to JNK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands (ephrins) have a pivotal role in the homeostasis of many adult organs and are widely expressed in the kidney. Glomerular diseases beginning with mesangiolysis can recover, with podocytes having a critical role in this healing process. We studied here the role of Eph signaling in glomerular disease recovery following mesangiolytic Thy1.1 nephritis in rats. EphB4 and ephrinBs were expressed in healthy glomerular podocytes and were upregulated during Thy1.1 nephritis, with EphB4 strongly phosphorylated around day 9. Treatment with NPV-BHG712, an inhibitor of EphB4 phosphorylation, did not cause glomerular changes in control animals. Nephritic animals treated with vehicle did not have morphological evidence of podocyte injury or loss; however, application of this inhibitor to nephritic rats induced glomerular microaneurysms, podocyte damage, and loss. Prolonged NPV-BHG712 treatment resulted in increased albuminuria and dysregulated mesangial recovery. Additionally, NPV-BHG712 inhibited capillary repair by intussusceptive angiogenesis (an alternative to sprouting angiogenesis), indicating a previously unrecognized role of podocytes in regulating intussusceptive vessel splitting. Thus, our results identify EphB4 signaling as a pathway allowing podocytes to survive transient capillary collapse during glomerular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases are key players during the development of the embryonic vasculature; however, their role and regulation in adult angiogenesis remain to be defined. Caveolae are flask-shaped invaginations of the cell membrane; their major structural protein, caveolin-1, has been shown to regulate signaling molecules localized in these micro-domains. The interaction of caveolin-1 with several of these proteins is mediated by the binding of its scaffolding domain to a region containing hydrophobic amino acids within these proteins. The presence of such a motif within the EphB1 kinase domain prompted us to investigate the caveolar localization and regulation of EphB1 by caveolin-1. We report that EphB1 receptors are localized in caveolae, and directly interact with caveolin-1 upon ligand stimulation. This interaction, as well as EphB1-mediated activation of extracellular-signal-regulated kinase (ERK), was abrogated by overexpression of a caveolin-1 mutant lacking a functional scaffolding domain. Interaction between Ephs and caveolin-1 is not restricted to the B-subclass of receptors, since we show that EphA2 also interacts with caveolin-1. Furthermore, we demonstrate that the caveolin-binding motif within the kinase domain of EphB1 is primordial for its correct membrane targeting. Taken together, our findings establish caveolin-1 as an important regulator of downstream signaling and membrane targeting of EphB1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ephrins are cell surface-associated ligands for Eph receptors and are important regulators of morphogenic processes such as axon guidance and angiogenesis. Transmembrane ephrinB ligands act as "receptor-like" signaling molecules, in part mediated by tyrosine phosphorylation and by engagement with PDZ domain proteins. However, the underlying cell biology and signaling mechanisms are poorly understood. Here we show that Src family kinases (SFKs) are positive regulators of ephrinB phosphorylation and phosphotyrosine-mediated reverse signaling. EphB receptor engagement of ephrinB causes rapid recruitment of SFKs to ephrinB expression domains and transient SFK activation. With delayed kinetics, ephrinB ligands recruit the cytoplasmic PDZ domain containing protein tyrosine phosphatase PTP-BL and are dephosphorylated. Our data suggest the presence of a switch mechanism that allows a shift from phosphotyrosine/SFK-dependent signaling to PDZ-dependent signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of vascular morphogenesis. EphrinB2 may have an active signaling role, resulting in bi-directional signal transduction downstream of both ephrinB2 and Eph receptors. To separate the ligand and receptor-like functions of ephrinB2 in mice, we replaced the endogenous gene by cDNAs encoding either carboxyterminally truncated (ephrinB2(DeltaC)) or, as a control, full-length ligand (ephrinB2(WT)). While homozygous ephrinB2(WT/WT) animals were viable and fertile, loss of the ephrinB2 cytoplasmic domain resulted in midgestation lethality similar to ephrinB2 null mutants (ephrinB2(KO)). The truncated ligand was sufficient to restore guidance of migrating cranial neural crest cells, but ephrinB2(DeltaC/DeltaC) embryos showed defects in vasculogenesis and angiogenesis very similar to those observed in ephrinB2(KO/KO) animals. Our results indicate distinct requirements of functions mediated by the ephrinB carboxyterminus for developmental processes in the vertebrate embryo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, regulate axon guidance and bundling in the developing brain, control cell migration and adhesion, and help patterning the embryo. Here we report that two ephrinB ligands and three EphB receptors are expressed in and regulate the formation of the vascular network. Mice lacking ephrinB2 and a proportion of double mutants deficient in EphB2 and EphB3 receptor signaling die in utero before embryonic day 11.5 (E11.5) because of defects in the remodeling of the embryonic vascular system. Our phenotypic analysis suggests complex interactions and multiple functions of Eph receptors and ephrins in the embryonic vasculature. Interaction between ephrinB2 on arteries and its EphB receptors on veins suggests a role in defining boundaries between arterial and venous domains. Expression of ephrinB1 by arterial and venous endothelial cells and EphB3 by veins and some arteries indicates that endothelial cell-to-cell interactions between ephrins and Eph receptors are not restricted to the border between arteries and veins. Furthermore, expression of ephrinB2 and EphB2 in mesenchyme adjacent to vessels and vascular defects in ephB2/ephB3 double mutants indicate a requirement for ephrin-Eph signaling between endothelial cells and surrounding mesenchymal cells. Finally, ephrinB ligands induce capillary sprouting in vitro with a similar efficiency as angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), demonstrating a stimulatory role of ephrins in the remodeling of the developing vascular system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases play a critical role in embryonic patterning and angiogenesis. In the adult, they are involved in carcinogenesis and pathological neovascularization. However, the mechanisms underlying their role in tumor formation and metastasis remain to be defined. Here, we demonstrated that stimulation of EphB1 with ephrinB1/Fc led to a marked downregulation of EphB1 protein, a process blocked by the lysosomal inhibitor bafilomycin. Following ephrinB1 stimulation, the ubiquitin ligase Cbl was recruited by EphB1 and then phosphorylated. Both Cbl phosphorylation and EphB1 ubiquitination were blocked by the Src inhibitor PP2. Overexpression of wild-type Cbl, but not of 70Z mutant lacking ligase activity, enhanced EphB1 ubiquitination and degradation. This negative regulation required the tyrosine kinase activity of EphB1 as kinase-dead EphB1-K652R was resistant to Cbl. Glutathione S-transferase binding experiments showed that Cbl bound to EphB1 through its tyrosine kinase-binding domain. In aggregate, we demonstrated that Cbl induces the ubiquitination and lysosomal degradation of activated EphB1, a process requiring EphB1 and Src kinase activity. To our knowledge, this is the first study dissecting the molecular mechanisms leading to EphB1 downregulation, thus paving the way to new means of modulating their angiogenic and tumorigenic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alveoli are formed in the lung by the insertion of secondary tissue folds, termed septa, which are subsequently remodeled to form the mature alveolar wall. Secondary septation requires interplay between three cell types: endothelial cells forming capillaries, contractile interstitial myofibroblasts, and epithelial cells. Here, we report that postnatal lung alveolization critically requires ephrinB2, a ligand for Eph receptor tyrosine kinases expressed by the microvasculature. Mice homozygous for the hypomorphic knockin allele ephrinB2DeltaV/DeltaV, encoding mutant ephrinB2 with a disrupted C-terminal PDZ interaction motif, show severe postnatal lung defects including an almost complete absence of lung alveoli and abnormal and disorganized elastic matrix. Lung alveolar formation is not sensitive to loss of ephrinB2 cytoplasmic tyrosine phosphorylation sites. Postnatal day 1 mutant lungs show extracellular matrix alterations without differences in proportions of major distal cell populations. We conclude that lung alveolar formation relies on endothelial ephrinB2 function.