5 resultados para Quartz crystal microbalance

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium in- quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 lg g-1),Al (154 ± 15 lg g-1), Li (30 ± 2 lg g-1), Fe (2.2 ± 0.3 lg g-1), Mn (0.34 ± 0.04 lg g-1), Ge (1.7 ± 0.2 lg g-1) and Ga (0.020 ± 0.002 lg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. oncentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. RESULTS: A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 mug/cm(2). The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 mug/cm(2)) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 mug/cm(2 )ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. CONCLUSION: The ALICE is a useful tool for dose-controlled nanoparticle (or solute) exposure of cells at the air-liquid interface. Significant differences between cellular response after ZnO nanoparticle exposure under submerged and air-liquid interface conditions suggest that pharmaceutical and toxicological studies with inhaled (nano-)particles should be performed under the more realistic air-liquid interface, rather than submerged cell conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quartz crystals in sandstones at depths of 1200 m–1400 m below the surface appear to reach a solubility equilibrium with the 4He-concentration in the surrounding pore- or groundwater after some time. A rather high 4Heconcentration of 4.5x10E-3 cc STP 4He/cm3 of water measured in a groundwater sample would for instance maintain a He pressure of 0.47 atm in a related volume. This value is equal within analytical error to the pressure deduced from the measured helium content of the quartz and its internal helium-accessible volume. To determine this volume, quartz crystals of 0.1 to 1 mm were separated from sandstones and exposed to a helium gas pressure of 32 atm at a temperature of 290°C for up to 2 months. By crushing, melting or isothermal heating the helium was then extracted from the helium saturated samples. Avolume on the order of 0.1% of the crystal volume is only accessible to helium atoms but not to argon atoms or water molecules. By monitoring the diffusive loss of He from the crystals at 350°C an effective diffusion constant on the order of 10E-9 cm2/s is estimated. Extrapolation to the temperature of 70°C in the sediments at a depth of 1400 m gives a typical time of about 100 000 years to reach equilibrium between helium in porewaters and the internal He-accessible volume of quartz crystals. In a geologic situation with stagnant pore- or groundwaters in sediments it therefore appears to be possible with this new method to deduce a 4He depth profile for porewaters in impermeable rocks based on their mineral record.