9 resultados para Quarantine pest

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The COLOSS BEEBOOK is a practical manual compiling standard methods in all fields of research on the western honey bee, Apis mellifera. The COLOSS network was founded in 2008 as a consequence of the heavy and frequent losses of managed honey bee colonies experienced in many regions of the world (Neumann and Carreck, 2010). As many of the world’s honey bee research teams began to address the problem, it soon became obvious that a lack of standardized research methods was seriously hindering scientists’ ability to harmonize and compare the data on colony losses obtained internationally. In its second year of activity, during a COLOSS meeting held in Bern, Switzerland, the idea of a manual of standardized honey bee research methods emerged. The manual, to be called the COLOSS BEEBOOK, was inspired by publications with similar purposes for fruit fly research (Lindsley and Grell, 1968; Ashburner, 1989; Roberts, 1998; Greenspan, 2004).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n recent years, declines of honey bee populations have received massive media attention worldwide, yet attempts to understand the causes have been hampered by a lack of standardisation of laboratory techniques. Published as a response to this, the COLOSS BEEBOOK is a unique collaborative venture involving 234 bee scientists from 34 countries, who have produced the definitive guide to how to carry out research on honey bees. It is hoped that these volumes will become the standards to be adopted by bee scientists worldwide. Volume II includes approximately 600 separate protocols dealing with the study of the pests and diseases of the honey bee, Apis mellifera. These cover epidemiology and surveying techniques, virus diseases, bacterial diseases such as European and American foulbrood, fungal and microsporidian diseases such as Nosema, mites such as Acarapis, Varroa and Tropilaelaps, and other pests such as the small hive beetle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. • Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.