6 resultados para Quantitative-qualitative approach
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE We sought to evaluate potential reasons given by board-certified doctors for the persistence of adverse events despite efforts to improve patient safety in Switzerland. SUMMARY BACKGROUND DATA In recent years, substantial efforts have been made to improve patient safety by introducing surgical safety checklists to standardise surgeries and team procedures. Still, a high number of adverse events remain. METHODS Clinic directors in operative medicine in Switzerland were asked to answer two questions concerning the reasons for persistence of adverse events, and the advantages and disadvantages of introducing and implementing surgical safety checklists. Of 799 clinic directors, the arguments of 237 (29.7%) were content-analysed using Mayring's content analysis method, resulting in 12 different categories. RESULTS Potential reasons for the persistence of adverse events were mainly seen as being related to the "individual" (126/237, 53.2%), but directors of high-volume clinics identified factors related to the "group and interactions" significantly more often as a reason (60.2% vs 40.2%; p = 0.003). Surgical safety checklists were thought to have positive effects on the "organisational level" (47/237, 19.8%), the "team level" (37/237, 15.6%) and the "patient level" (40/237, 16.9%), with a "lack of willingness to implement checklists" as the main disadvantage (34/237, 14.3%). CONCLUSION This qualitative study revealed the individual as the main player in the persistence of adverse events. Working conditions should be optimised to minimise interface problems in the case of cross-covering of patients, to assure support for students, residents and interns, and to reduce strain. Checklists are helpful on an "organisational level" (e.g., financial benefits, quality assurance) and to clarify responsibilities.
Resumo:
The vulvar intraepithelial neoplasia (VIN) is a rare chronic skin condition that may progress to an invasive carcinoma of the vulva. Major issues affecting women's health were occurring symptoms, negative influences on sexuality, uncertainty concerning the illness progression and changes in the body image. Despite this, there is little known about the lived experiences of the illness trajectory. Therefore, the aim of this study was to describe the experiences of women with VIN during the illness trajectory. In a secondary data analysis of the foregoing qualitative study we analysed eight narrative interviews with women with VIN by using thematic analysis in combination with critical hermeneutics. Central for these women during their course of illness was a sense of "Hope and Fear". This constitutive pattern reflects the fear of recurrence but also the trust in healing. The eight narratives showed women's experiences during their course of illness occurred in five phases: "there is something unknown"; "one knows, what IT is"; "IT is treated and should heal"; "IT has effects on daily life"; "meanwhile it works". Women's experiences were particularly influenced by the feeling of "embarrassment" and by "dealing with professionals". Current care seems to lack adequate support for women with VIN to manage these phases. We suggest, based on our study and the international literature, that new models of counselling and providing information need to be developed and evaluated.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.