18 resultados para QUANTUM-MECHANICS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.
Resumo:
We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.
Resumo:
Simulations of supersymmetric field theories on the lattice with (spontaneously) broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N=2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper – the first in a series of three – we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.
Resumo:
Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper – the second in a series of three – we present such an investigation for N=2 supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.
Resumo:
In the fermion loop formulation the contributions to the partition function naturally separate into topological equivalence classes with a definite sign. This separation forms the basis for an efficient fermion simulation algorithm using a fluctuating open fermion string. It guarantees sufficient tunnelling between the topological sectors, and hence provides a solution to the fermion sign problem affecting systems with broken supersymmetry. Moreover, the algorithm shows no critical slowing down even in the massless limit and can hence handle the massless Goldstino mode emerging in the supersymmetry broken phase. In this paper – the third in a series of three – we present the details of the simulation algorithm and demonstrate its efficiency by means of a few examples.
Resumo:
We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.
Resumo:
A physical random number generator based on the intrinsic randomness of quantum mechanics is described. The random events are realized by the choice of single photons between the two outputs of a beamsplitter. We present a simple device, which minimizes the impact of the photon counters’ noise, dead-time and after pulses.
Resumo:
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Resumo:
The paper explains in what sense the GRW matter density theory (GRWm) is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.
Resumo:
According to Bell's theorem a large class of hidden-variable models obeying Bell's notion of local causality (LC) conflict with the predictions of quantum mechanics. Recently, a Bell-type theorem has been proven using a weaker notion of LC, yet assuming the existence of perfectly correlated event types. Here we present a similar Bell-type theorem without this latter assumption. The derived inequality differs from the Clauser-Horne inequality by some small correction terms, which render it less constraining.
Resumo:
This tutorial review article is intended to provide a general guidance to a reader interested to learn about the methodologies to obtain accurate electron density mapping in molecules and crystalline solids, from theory or from experiment, and to carry out a sensible interpretation of the results, for chemical, biochemical or materials science applications. The review mainly focuses on X-ray diffraction techniques and refinement of experimental models, in particular multipolar models. Neutron diffraction, which was widely used in the past to fix accurate positions of atoms, is now used for more specific purposes. The review illustrates three principal analyses of the experimental or theoretical electron density, based on quantum chemical, semi-empirical or empirical interpretation schemes, such as the quantum theory of atoms in molecules, the semi-classical evaluation of interaction energies and the Hirshfeld analysis. In particular, it is shown that a simple topological analysis based on a partition of the electron density cannot alone reveal the whole nature of chemical bonding. More information based on the pair density is necessary. A connection between quantum mechanics and observable quantities is given in order to provide the physical grounds to explain the observations and to justify the interpretations.
Resumo:
We consider one-dimensional Schrödinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations and similar operators in detail. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive a non-local self-adjoint operator similar to the Schrödinger operator and also find the associated “charge conjugation” operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.
Resumo:
In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole−dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent−solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and stabilization of CT states in an important group of molecules such as transition metal complexes is inaccurate. In particular, we proved that the solvent molecules are not just spectators of intramolecular electron density redistribution but significantly modulate it. Our results solicit further development of quantum mechanics computational methods to treat the solute and (at least) the closest solvent molecules including the nonperturbative treatment of the effects of local electrostatics and direct solvent−solute interactions to describe the dynamical changes of the solute excited states during the solvent response.