1 resultado para QUANTUM WIRES

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate how redox control of intra-molecular quantum interference in phase-coherent molecular wires can be used to enhance the thermopower (Seebeck coefficient) S and thermoelectric figure of merit ZT of single molecules attached to nanogap electrodes. Using first principles theory, we study the thermoelectric properties of a family of nine molecules, which consist of dithiol-terminated oligo (phenylene-ethynylenes) (OPEs) containing various central units. Uniquely, one molecule of this family possesses a conjugated acene-based central backbone attached via triple bonds to terminal sulfur atoms bound to gold electrodes and incorporates a fully conjugated hydroquinonecentral unit. We demonstrate that both S and the electronic contribution Z el T to the figure of merit ZT can be dramatically enhanced by oxidizing the hydroquinone to yield a second molecule, which possesses a cross-conjugated anthraquinone central unit. This enhancement originates from the conversion of the pi-conjugation in the former to cross-conjugation in the latter, which promotes the appearance of a sharp anti-resonance at the Fermi energy. Comparison with thermoelectric properties of the remaining seven conjugated molecules demonstrates that such large values of S and Z el T are unprecedented. We also evaluate the phonon contribution to the thermal conductance, which allows us to compute the full figure of merit ZT = Z el T/(1 + κ p/κ el), where κ p is the phonon contribution to the thermal conductance and κ el is the electronic contribution. For unstructured gold electrodes, κ p/κ el Gt⃒ 1 and therefore strategies to reduce κ p are needed to realize the highest possible figure of merit.