3 resultados para QP

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of the schizont stage of the obligate intracellular parasites Theileria parva or T. annulata in the cytoplasm of an infected leukocyte results in host cell transformation via a mechanism that has not yet been elucidated. Proteins, secreted by the schizont, or expressed on its surface, are of interest as they can interact with host cell molecules that regulate host cell proliferation and/or survival. The major schizont surface protein is the polymorphic immunodominant molecule, PIM, which contains a large glutamine- and proline-rich domain (QP-rd) that protrudes into the host cell cytoplasm. Analyzing QP-rd generated by in vitro transcription/translation, we found that the signal peptide was efficiently cleaved post-translationally upon addition of T cell lysate or canine pancreatic microsomes, whereas signal peptide cleavage of a control protein only occurred cotranslationally and in the presence of microsomal membranes. The QP-rd of PIM migrated anomalously in SDS-PAGE and removal of the 19 amino acids corresponding to the predicted signal peptide caused a decrease in apparent molecular mass of 24kDa. The molecule was analyzed using monoclonal antibodies that recognize a set of previously defined PIM epitopes. Depending on the presence or the absence of the signal peptide, two conformational states could be demonstrated that are differentially recognized, with N-terminal epitopes becoming readily accessible upon signal peptide removal, and C-terminal epitopes becoming masked. Similar observations were made when the QP-rd of PIM was expressed in bacteria. Our observations could also be of relevance to other schizont proteins. A recent analysis of the proteomes of T. parva and T. annulata revealed the presence of a large family of potentially secreted proteins, characterized by the presence of large stretches of amino acids that are also particularly rich in QP-residues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pichia pastoris, a methylotrophic yeast, is an established system for the production of heterologous proteins, particularly biopharmaceuticals and industrial enzymes. To maximise and optimise the production of recombinant products, recent molecular research has focused on numerous issues including the design of expression vectors, optimisation of gene copy number, co-expression of secretory proteins such as chaperones, engineering of glycosylation and secretory pathways, etc. However, the physiological effects of different cultivation strategies are often difficult to separate from the molecular effects of the gene construct (e.g., cellular stress through over-expression or incorrect post-translational processing). Hence, overall system optimisation is difficult, even though it is urgently required in order to describe and understand the behaviour of new molecular constructs. This review focuses on particular aspects of recombinant protein production related to variations in biomass growth and their implications for strain design and screening, as well as on the concept of rational comparisons between cultivation systems for the development of specific production processes in bioreactors. The relationship between specific formation rates of secreted recombinant proteins, qp, and specific growth rates, μ, has been analysed in a conceptual attempt to compare different systems, particularly those based on AOX1/methanol and GAP/glucose, and this has now evolved into a pivotal concept for bioprocess engineering of P. pastoris.