32 resultados para QCD, chiral symmetry, quark action, anisotropy

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study QCD with twelve light flavors at intermediate values of the bare lattice coupling. We contrast the results for the order parameter with different theoretical models motivated by the physics of the Goldstone phase and of the symmetric phase, and we perform a model independent analysis of the meson spectrum inspired by universal properties of chiral symmetry. Our analysis favors chiral symmetry restoration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use quantum link models to construct a quantum simulator for U(N) and SU(N) lattice gauge theories. These models replace Wilson’s classical link variables by quantum link operators, reducing the link Hilbert space to a finite number of dimensions. We show how to embody these quantum link models with fermionic matter with ultracold alkaline-earth atoms using optical lattices. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can thus address the corresponding dynamics in real time. Using exact diagonalization results we show that these systems share qualitative features with QCD, including chiral symmetry breaking and we study the expansion of a chirally restored region in space in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A measurement of the parity-violating decay asymmetry parameter, αb , and the helicity amplitudes for the decay Λ 0 b →J/ψ(μ + μ − )Λ 0 (pπ − ) is reported. The analysis is based on 1400 Λ 0 b and Λ ¯ 0 b baryons selected in 4.6  fb −1 of proton–proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the Λ 0 b and Λ ¯ 0 b samples under the assumption of CP conservation, the value of α b is measured to be 0.30±0.16(stat)±0.06(syst) . This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the scheme are: mud(2 GeV)=3.70(17) MeV, ms(2 GeV)=99.6(4.3) MeV and mc(mc)=1.348(46) GeV. We obtain also the quark mass ratios ms/mud=26.66(32) and mc/ms=11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56), leading to mu=2.36(24) MeV and md=5.03(26) MeV.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We calculate the O(αs) corrections to the double differential decay width dΓ77/(ds1ds2) for the process B¯→Xsγγ, originating from diagrams involving the electromagnetic dipole operator O7. The kinematical variables s1 and s2 are defined as si=(pb−qi)2/m2b, where pb, q1, q2 are the momenta of the b quark and two photons. We introduce a nonzero mass ms for the strange quark to regulate configurations where the gluon or one of the photons become collinear with the strange quark and retain terms which are logarithmic in ms, while discarding terms which go to zero in the limit ms→0. When combining virtual and bremsstrahlung corrections, the infrared and collinear singularities induced by soft and/or collinear gluons drop out. By our cuts the photons do not become soft, but one of them can become collinear with the strange quark. This implies that in the final result a single logarithm of ms survives. In principle, the configurations with collinear photon emission could be treated using fragmentation functions. In a related work we find that similar results can be obtained when simply interpreting ms appearing in the final result as a constituent mass. We do so in the present paper and vary ms between 400 and 600 MeV in the numerics. This work extends a previous paper by us, where only the leading power terms with respect to the (normalized) hadronic mass s3=(pb−q1−q2)2/m2b were taken into account in the underlying triple differential decay width dΓ77/(ds1ds2ds3).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review the failure of lowest order chiral SU(3)L ×SU(3)R perturbation theory χPT3 to account for amplitudes involving the f0(500) resonance and O(mK) extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500) resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article gives details of our proposal to replace ordinary chiral SU(3)L×SU(3)R perturbation theory χPT3 by three-flavor chiral-scale perturbation theory χPTσ. In χPTσ, amplitudes are expanded at low energies and small u,d,s quark masses about an infrared fixed point αIR of three-flavor QCD. At αIR, the quark condensate ⟨q¯q⟩vac≠0 induces nine Nambu-Goldstone bosons: π,K,η, and a 0++ QCD dilaton σ. Physically, σ appears as the f0(500) resonance, a pole at a complex mass with real part ≲ mK. The ΔI=1/2 rule for nonleptonic K decays is then a consequence of χPTσ, with a KSσ coupling fixed by data for γγ→ππ and KS→γγ. We estimate RIR≈5 for the nonperturbative Drell-Yan ratio R=σ(e+e−→hadrons)/σ(e+e−→μ+μ−) at αIR and show that, in the many-color limit, σ/f0 becomes a narrow qq¯ state with planar-gluon corrections. Rules for the order of terms in χPTσ loop expansions are derived in Appendix A and extended in Appendix B to include inverse-power Li-Pagels singularities due to external operators. This relates to an observation that, for γγ channels, partial conservation of the dilatation current is not equivalent to σ-pole dominance.