63 resultados para Pyruvate formiate lyase

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death, migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells, endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells. Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process. Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The urea cycle defect argininosuccinate lyase (ASL) deficiency has a large spectrum of presentations from highly severe to asymptomatic. Enzyme activity assays in red blood cells or fibroblasts, although diagnostic of the deficiency, fail to discriminate between severe, mild or asymptomatic cases. Mutation/phenotype correlation studies are needed to characterize the effects of individual mutations on the activity of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human adrenal cortex produces mineralocorticoids, glucocorticoids, and androgens in a species-specific, hormonally regulated, zone-specific, and developmentally characteristic fashion. Most molecular studies of adrenal steroidogenesis use human adrenocortical NCI-H295A and NCI-H295R cells as a model because appropriate animal models do not exist. NCI-H295A and NCI-H295R cells originate from the same adrenocortical carcinoma which produced predominantly androgens but also smaller amounts of mineralocorticoids and glucocorticoids. Research data obtained from either NCI-H295A or NCI-H295R cells are generally compared, although for the same experiments no direct comparison between the two cell lines has been performed. Therefore, we compared the steroid profile and the expression pattern of important genes involved in steroidogenesis in both cell lines. We found that steroidogenesis differs profoundly. NCI-H295A cells produce more mineralocorticoids, whereas NCI-H295R cells produce more androgens. Expression of the 3beta-hydroxysteroid dehydrogenase (HSD3B2), cytochrome b5, and sulfonyltransferase genes is higher in NCI-H295A cells, whereas expression of the cytochrome P450c17 (CYP17), 21-hydroxylase (CYP21), and P450 oxidoreductase genes does not differ between the cell lines. We found lower 3beta-hydroxysteroid dehydrogenase type 2 but higher 17,20-lyase activity in NCI-H295R cells explaining the 'androgenic' steroid profile for these cells and resembling the zona reticularis of the human adrenal cortex. Both cell lines were found to express the ACTH receptor at low levels consistent with low stimulation by ACTH. By contrast, both cell lines were readily stimulated by 8Br-cAMP. The angiotensin type 1 receptor was highly expressed in NCI-H295R than NCI-H295A cells and angiotensin II stimulated steroidogenesis in NCI-H295R but not NCI-H295A cells. Our data suggest that comparative studies between NCI-H295A and NCI-H295R cells may help find important regulators of mineralocorticoid or androgen biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate variations in hepatic regulation of metabolism during the dry period, after parturition, and in early lactation in dairy cows. For this evaluation, cows were divided into 2 groups based on the plasma concentration of beta-hydroxybutyric acid (BHBA) in wk 4 postpartum (PP; group HB, BHBA >0.75 mmol/L; group LB, BHBA <0.75 mmol/L, respectively). Liver biopsies were obtained from 28 cows at drying off (mean 59 +/- 8 d antepartum), on d 1, and in wk 4 and 14 PP. Blood samples were collected every 2 wk during this entire period. Liver samples were analyzed for mRNA abundance of genes related to carbohydrate metabolism (pyruvate carboxylase, PC; phosphoenolpyruvate carboxykinase, PEPCK; citrate synthase, CS), fatty acid biosynthesis (ATP citrate lyase, ACLY) and oxidation (acyl-CoA synthetase long-chain, ACSL; carnitine palmitoyltransferase 1A, CPT 1A; carnitine palmitoyltransferase 2, CPT 2; acyl-coenzyme A dehydrogenase very long chain, ACADVL), cholesterol biosynthesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMGCS1), ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, HMGCS2), and of genes encoding the transcription factors peroxisome proliferator-activated receptor alpha (PPARalpha), peroxisome proliferator-activated receptor gamma (PPARgamma), and sterol regulatory element binding factor 1 (SREBF1). Blood plasma was assayed for concentrations of glucose, BHBA, nonesterified fatty acids, cholesterol, triglycerides, insulin, insulin-like growth factor-I, and thyroid hormones. In both groups, plasma parameters followed a pattern usually observed in dairy cows. However, changes were moderate and the energy balance in cows turned positive in wk 7 PP for both groups. Additionally, the energy balance and milk yield were similar for both groups after parturition onwards. Significant group effects were found at drying off, when plasma concentrations of triglycerides were higher in LB than in HB, and in wk 4 PP, when plasma concentrations of glucose and IGF-I were lower in HB than in LB. Similarly, moderate changes in mRNA expression of hepatic genes between the different time points were observed, although HB cows showed more adaptive performance than LB cows based on changes in mRNA expression of PEPCKc, PEPCKm, CS, CPT 1A, CPT 2, and PPARalpha. Part of the variation measured in this study was explained by parity. Significant Spearman rank correlation coefficients between the variables were not similar at each time point and were not similar between the groups at each time point, suggesting that metabolic regulation differs between cows. In conclusion, metabolic regulation in dairy cows is a dynamic system, and differs obviously between cows at different metabolic stages related to parturition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Argininosuccinate lyase deficiency (ASLD) is caused by a defect of the urea cycle enzyme argininosuccinate lyase (ASL) encoded by the ASL gene. Patients often present early after birth with hyperammonemia but can also manifest outside the neonatal period mainly triggered by excessive protein catabolism. Clinical courses comprise asymptomatic individuals who only excrete the biochemical marker, argininosuccinic acid, in urine, and patients who succumb to their first hyperammonemic decompensation. Some patients without any hyperammonemia develop severe neurological disease. Here, we are providing an update on the molecular basis of ASLD by collecting all published (n = 67) as well as novel mutations (n = 67) of the ASL gene. We compile data on all 160 different genotypes ever identified in 223 ASLD patients, including clinical courses whenever available. Finally, we are presenting structural considerations focusing on the relevance of mutations for ASL homotetramer formation. ASLD can be considered as a panethnic disease with only single founder mutations identified in the Finnish (c.299T>C, p.Ile100Thr) and Arab (c.1060C>T, p.Gln354*) population. Most mutations are private with only few genotypes recurring in unrelated patients. The majority of mutations are missense changes including some with more frequent occurrence such as p.Arg12Gln, p.Ile100Thr, p.Val178Met, p.Arg186Trp, p.Glu189Gly, p.Gln286Arg, and p.Arg385Cys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes the 17alpha-hydroxylase activity required for glucocorticoid synthesis and the 17,20 lyase activity required for sex steroid synthesis. Most P450 enzymes have fixed ratios of their various activities, but the ratio of these two activities of P450c17 is regulated post-translationally. We have shown that serine phosphorylation of P450c17 and the allosteric action of cytochrome b5 increase 17,20 lyase activity, but it has not been apparent whether these two post-translational mechanisms interact. Using purified enzyme systems, we now show that the actions of cytochrome b5 are independent of the state of P450c17 phosphorylation. Suppressing cytochrome b5 expression in human adrenal NCI-H295A cells by >85% with RNA interference had no effect on 17alpha-hydroxylase activity but reduced 17,20 lyase activity by 30%. Increasing P450c17 phosphorylation could compensate for this reduced activity. When expressed in bacteria, human P450c17 required either cytochrome b5 or phosphorylation for 17,20 lyase activity. The combination of cytochrome b5 and phosphorylation was not additive. Cytochrome b5 and phosphorylation enhance 17,20 lyase activity independently of each other, probably by increasing the interaction between P450c17 and NADPH-cytochrome P450 oxidoreductase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE Women with epilepsy apparently have a higher incidence of polycystic ovary syndrome (PCOS) than do women without epilepsy. Whether the underlying disease or the antiepileptic drug (AED) treatment is responsible for this increased risk is unknown, although clinical reports implicate valproic acid (VPA) as a potential cause. The steroidogenic enzymes 3beta HSDII (3beta-hydroxysteroid dehydrogenase) and P450c17 (17alpha-hydroxylase/17,20 lyase) are essential for C19 steroid biosynthesis, which is enhanced during adrenarche and in PCOS. METHODS To determine whether the AEDs VPA, carbamazepine (CBZ), topiramate (TPM), or lamotrigine (LYG) directly affect the activities of human 3beta HSDII and P450c17, we added them to yeast expressing human P450c17 or 3beta HSDII and assayed enzymatic activities in the microsomal fraction. RESULTS Concentrations of VPA < or = 10 mM had no effect on activities of P450c17; however, VPA inhibited 3beta HSDII activity starting at 0.3 mM (reference serum unbound concentration, 0.035-0.1 mM) with an IC50 of 10.1 mM. CBZ, TPM, and LTG did not influence 3beta HSDII or P450c17 activities at typical reference serum unbound concentrations, but did inhibit 3beta HSDII and P450c17 at concentrations >10-fold higher. CONCLUSIONS None of the tested AEDs influenced 3beta HSDII or P450c17 activities at concentrations normally used in AED therapy. However, VPA started to inhibit 3beta HSDII activity at concentrations 3 times above the typical reference serum unbound concentration. Because inhibition of 3beta HSDII activity will shift steroidogenesis toward C19 steroid production when P450c17 activities are unchanged, very high doses of VPA may promote C19 steroid biosynthesis, thus resembling PCOS. CBZ, TPM, and LTG influenced 3beta HSDII and P450c17 only at toxic concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase ( PDC) and alcohol dehydrogenase ( ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen- specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild- type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen- specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen - pistil interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loss of function of the urea cycle enzyme argininosuccinate lyase (ASL) is caused by mutations in the ASL gene leading to ASL deficiency (ASLD). ASLD has a broad clinical spectrum ranging from life-threatening severe neonatal to asymptomatic forms. Different levels of residual ASL activity probably contribute to the phenotypic variability but reliable expression systems allowing clinically useful conclusions are not yet available. In order to define the molecular characteristics underlying the phenotypic variability, we investigated all ASL mutations that were hitherto identified in patients with late onset or mild clinical and biochemical courses by ASL expression in human embryonic kidney 293 T cells. We found residual activities >3 % of ASL wild type (WT) in nine of 11 ASL mutations. Six ASL mutations (p.Arg95Cys, p.Ile100Thr, p.Val178Met, p.Glu189Gly, p.Val335Leu, and p.Arg379Cys) with residual activities ≥16 % of ASL WT showed no significant or less than twofold reduced Km values, but displayed thermal instability. Computational structural analysis supported the biochemical findings by revealing multiple effects including protein instability, disruption of ionic interactions and hydrogen bonds between residues in the monomeric form of the protein, and disruption of contacts between adjacent monomeric units in the ASL tetramer. These findings suggest that the clinical and biochemical course in variant forms of ASLD is associated with relevant residual levels of ASL activity as well as instability of mutant ASL proteins. Since about 30 % of known ASLD genotypes are affected by mutations studied here, ASLD should be considered as a candidate for chaperone treatment to improve mutant protein stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel homozygous long-range deletion of the CYP17A1 gene abolished protein expression and caused the severest form of 17-hydroxylase deficiency in one kindred of a Turkish family. The affected subjects presented with 46,XY sex reversal and 46,XX lack of pubertal development as well as severe hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant survival during flooding relies on ethanolic fermentation for energy production. The available literature indicates that the first enzyme of the ethanolic fermentation pathway, pyruvate decarboxylase (PDC), is expressed at very low levels and is likely to be rate-limiting during oxygen deprivation. The authors expressed high levels of bacterial PDC in tobacco to study the modulation of PDC activity in vivo, and assess its impact on the physiology of ethanolic fermentation and survival under oxygen stress. In contrast to leaves, wild-type normoxic roots contained considerable PDC activity, and overexpression of the bacterial PDC caused only a moderate increase in acetaldehyde and ethanol production under anoxia compared to wild-type roots. No significant lactate production could be measured at any time, making it unlikely that lactate-induced acidification (LDH/PDC pH-stat) triggers the onset of ethanol synthesis. Instead, the authors favour a model in which the flux through the pathway is regulated by substrate availability. The increased ethanolic flux in the transgenics compared to the wild-type did not enhance anoxia tolerance. On the contrary, rapid utilisation of carbohydrate reserves enhanced premature cell death in the transgenics while replenishment of carbohydrates improved survival under anoxia.