18 resultados para Pulsed N2 laser
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Several studies have proven the efficacy of pulsed dye laser (PDL) in the treatment of plaque type psoriasis. However, only two published studies indicate the effectiveness of PDL on nail psoriasis.
Resumo:
An experimental procedure for precise and accurate measurements of isotope abundances by a miniature laser ablation mass spectrometer for space research is described. The measurements were conducted on different untreated NIST standards and galena samples by applying pulsed UV laser radiation (266 nm, 3 ns and 20 Hz) for ablation, atomisation, and ionisation of the sample material. Mass spectra of released ions are measured by a reflectron-type time-of-flight mass analyser. A computer controlled performance optimiser was used to operate the system at maximum ion transmission and mass resolution. At optimal experimental conditions, the best relative accuracy and precision achieved for Pb isotope compositions are at the per mill level and were obtained in a range of applied laser irradiances and a defined number of accumulated spectra. A similar relative accuracy and precision was achieved in the study of Pb isotope compositions in terrestrial galena samples. The results for the galena samples are similar to those obtained with a thermal ionisation mass spectrometer (TIMS). The studies of the isotope composition of other elements yielded relative accuracy and precision at the per mill level too, with characteristic instrument parameters for each element. The relative accuracy and precision of the measurements is degrading with lower element/isotope concentration in a sample. For the elements with abundances below 100 ppm these values drop to the percent level. Depending on the isotopic abundances of Pb in minerals, 207Pb/206Pb ages with accuracy in the range of tens of millions of years can be achieved.
Resumo:
BACKGROUND Port-wine stains (PWS) are malformations of capillaries in 0.3% of newborn children. The treatment of choice is by pulsed dye LASER (PDL), and requires several sessions. The efficacy of this treatment is at present evaluated on the basis of clinical inspection and of digital photographs taken throughout the treatment. LASER-Doppler imaging (LDI) is a noninvasive method of imaging the perfusion of the tissues by the microcirculatory system (capillaries). The aim of this paper is to demonstrate that LDI allows a quantitative, numerical evaluation of the efficacy of the PDL treatment of PWS. METHOD The PDL sessions were organized according to the usual scheme, every other month, from September 1, 2012, to September 30, 2013. LDI imaging was performed at the start and at the conclusion of the PDL treatment, and simultaneously on healthy skin in order to obtain reference values. The results evidenced by LDI were analyzed according to the "Wilcoxon signed-rank" test before and after each session, and in the intervals between the three PDL treatment sessions. RESULTS Our prospective study is based on 20 new children. On average, the vascularization of the PWS was reduced by 56% after three laser sessions. Compared with healthy skin, initial vascularization of PWS was 62% higher than that of healthy skin at the start of treatment, and 6% higher after three sessions. During the 2 months between two sessions, vascularization of the capillary network increased by 27%. CONCLUSION This study shows that LDI can demonstrate and measure the efficacy of PDL treatment of PWS in children. The figures obtained when measuring the results by LDI corroborate the clinical assessments and may allow us to refine, and perhaps even modify, our present use of PDL and thus improve the efficacy of the treatment.
Resumo:
Animal studies of excisional biopsies have shown less thermal damage when a carbon dioxide (CO(2)) laser (10.6 μm) is used in a char-free (CF) mode than in a continuous-wave (CW) mode. The authors' aim was to evaluate and compare clinical and histopathologic findings of excisional biopsies performed with CW and CF CO(2) laser (10.6 μm) modes.
Resumo:
BACKGROUND In experimental animal studies, pulsing the CO2 laser beam has been shown to reduce the thermal damage zone of excised oral mucosal tissue. However, there is still controversy over whether this is borne out under clinical conditions. OBJECTIVE To compare the outcome following excisional biopsies of fibrous hyperplasias using a pulsed (cf) versus a continuous wave (cw) CO2 laser mode regarding the thermal damage zone, duration of surgeries, intra- and postoperative complications, postoperative pain sensation, scarring and/or relapse during the initial 6 months. MATERIALS AND METHODS One hundred Swiss-resident patients with a fibrous hyperplasia in their buccal mucosa were randomly assigned to the cw mode (5 W) or the cf mode (140 Hz, 400 microseconds, 33 mJ, 4.62 W) group. All excisions were performed by one single oral surgeon. Postoperative pain (2 weeks) was recorded by visual analogue scale (VAS; ranging from 0 to 100). Intake of analgesics and postoperative complications were recorded in a standardized study form. The maximum width of the collateral thermal damage zone was measured (µm) in excision specimens by one pathologist. Intraoral photographs at 6-month follow-up examinations were evaluated regarding scarring (yes/no). RESULTS Median duration of the excision was 65 seconds in the cw and 81 seconds in the cf group (P = 0.13). Intraoperative bleeding occurred in 16.3% of the patients in the cw and 17.7% of the cf group. The median value of the thermal damage zone was 161(±228) μm in the cw and 152(± 105) μm in the cf group (P = 0.68). The reported postoperative complications included swelling in 19% and minor bleeding in 6% without significant differences between the two laser modes. When comparing each day separately or the combined mean VAS scores of both groups between Days 1-3, 1-7, and 1-15, there were no significant differences. However, more patients of the cw group (25%) took analgesics than patients of the cf group (9.8%) resulting in a borderline significance (P = 0.04). Scarring at the excision site was found in 50.6% of 77 patients after 6 months, and more scars were identified in cases treated with the cf mode (P = 0.03). CONCLUSIONS Excision of fibrous hyperplasias performed with a CO2 laser demonstrated a good clinical outcome and long-term predictability with a low risk of recurrence regardless of the laser mode (cf or cw) used. Scarring after 6 months was only seen in 50.6% of the cases and was slightly more frequent in the cf mode group. Based on the findings of the present study, a safety border of 1 mm appears sufficient for both laser modes especially when performing a biopsy of a suspicious soft tissue lesion to ensure a proper histopathological examination.
Resumo:
ARGONTUBE is a liquid argon time projection chamber (LAr TPC) with a drift field generated in-situ by a Greinacher voltage multiplier circuit. We present results on the measurement of the drift-field distribution inside ARGONTUBE using straight ionization tracks generated by an intense UV laser beam. Our analysis is based on a simplified model of the charging of a multi-stage Greinacher circuit to describe the voltages on the field cage rings.
Resumo:
Cutaneous collagenous vasculopathy (CCV) is a rare idiopathic microangiopathy of the cutaneous vasculature characterized histologically by the presence of dilated small blood vessels with flat endothelial cells and thickened walls containing hyaline material in the upper dermis. We report an elderly patient presenting with an extensive form of CCV involving the trunk, upper and lower limbs. She was treated with Multiplex PDL 595-nm/Nd:YAG 1,064-nm laser and optimized pulsed light. This approach, which has never been reported for CCV so far, resulted in a striking and almost complete clearance of the widespread lesions. We here review our knowledge about CCV and therapeutic options available with a survey of the literature.
Resumo:
PURPOSE: The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. PATIENTS AND METHODS: 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. RESULTS: The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. CONCLUSIONS: The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.
Resumo:
Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results.
Resumo:
BACKGROUND: Cerebral revascularization may be indicated either for blood flow preservation or flow augmentation, often in clinical situations where neither endovascular nor standard surgical intervention can be performed. Cerebral revascularization can be performed by using a temporary occlusive or a non-occlusive technique. Both of these possibilities have their specific range of feasibility. Therefore non-occlusive revascularization techniques have been developed. To further reduce the risks for patients, less time consuming, sutureless techniques such as laser tissue soldering are currently being investigated. METHOD: In the present study, a new technique for side-to-side anastomosis was developed. Using a "sandwich technique", two vessels are kept in close contact during the laser soldering. Thoraco-abdominal aortas from 24 different rabbits were analyzed for laser irradiation induced tensile strength. Two different irradiation modes (continuous and pulsed) were used. The results were compared to conventional, noncontact laser soldering. Histology was performed using HE, Mason's Trichrome staining. FINDINGS: The achieved tensile strengths were significantly higher using the close contact "sandwich technique" as compared to the conventional adaptation technique. Furthermore, tensile strength was higher in the continuously irradiated specimen as compared to the specimen undergoing pulsed laser irradiation. The histology showed similar denaturation areas in both groups. The addition of a collagen membrane between vessel components reduced the tensile strength. CONCLUSION: These first results proved the importance of close and tight contact during the laser soldering procedure thus enabling the development of a "sandwich laser irradiation device" for in vivo application in the rabbit.
Resumo:
The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency’s Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury’s surface.