26 resultados para Proxy-data
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present the first 7500 yr long multi-proxy record from a raised bog located at the southern Baltic coast, Poland. Testate amoebae, plant macrofossils, pollen and microscopic charcoal were used to reconstruct environmental changes in Pomerania (northern Poland, Kaszuby Lakeland) from a 7-m thick peat archive of Stążki bog dated 5500 BC–AD 1250. We obtained a record of proxies representing different spatial scales: regional vegetation changed simultaneously with local vegetation, and testate amoebae showed a pattern of change similar to that of pollen and plant macrofossils. On the basis of the combined proxies, we distinguished three hydroclimatic stages: moist conditions 5500–3450 BC, drier conditions with regionally increased fires up to 600 BC, and again moist conditions from 600 BC onward. During the drier interval, a first climatic shift to wetter conditions at 1700 BC is indicated by regional pollen as the replacement of Corylus by Carpinus, and locally by, e.g., the increase of Hyalosphenia elegans and mire plants such as Sphagnum sec. Cuspidata. Furthermore, we observed a correlation since 600 BC among the re-expansion of Carpinus (after a sudden decline ca. 950 BC), increased peat accumulation, increase of Hyalosphenia species, and fewer fires, suggesting lower evapotranspiration and a stable high water table in the bog. Fagus started to expand after AD 810 gradually replacing Carpinus, which was possibly due to a gradually more oceanic climate, though we cannot exclude human impact on the forests. Peat accumulation, determined by radiocarbon dating, varied with bog surface wetness. The hydroclimatic phases found in Stążki peatland are similar to moisture changes recorded in other sites from Poland and Europe. This is the first detailed record of hydroclimatic change during the Holocene in the southern Baltic region, so it forms a reference site for further studies on other southern Baltic bogs that are in progress.
Resumo:
For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.
Resumo:
A 36 m long ice core down to bedrock from the Cerro Tapado glacier (5536 m a.s.l, 30°08' S, 69°55' W) was analyzed to reconstruct past climatic conditions for Northern Chile. Because of the marked seasonality in the precipitation (short wet winter and extended dry summer periods) in this region, major snow ablation and related post-depositional processes occur on the glacier surface during summer periods. They include predominantly sublimation and dry deposition. Assuming that, like measured during the field campaign, the enrichment of chloride was always related to sublimation, the chemical record along the ice core may be applied to reconstruct the history of such secondary processes linked to the past climatic conditions over northern Chile. For the time period 1962–1999, a mean annual net accumulation of 316 mm water equivalent (weq) and 327 mm weq loss by sublimation was deduced by this method. This corresponds to an initial total annual accumulation of 539 mm weq. The annual variability of the accumulation and sublimation is related with the Southern Oscillation Index (SOI): higher net-accumulation during El-Niño years and more sublimation during La Niña years. The deepest part of the ice record shows a time discontinuity; with an ice body deposited under different climatic conditions: 290 mm higher precipitation but with reduced seasonal distribution (+470 mm in winter and –180 mm in summer) and –3°C lower mean annual temperature. Unfortunately, its age is unknown. The comparison with regional proxy data however let us conclude that the glacier buildup did most likely occur after the dry mid-Holocene.
Resumo:
210Pb, 137Cs and 14C dated sediments of two late Holocene landslide lakes in the Provincial Park Lagunas de Yala (Laguna Rodeo, Laguna Comedero, 24°06′S, 65°30′W, 2100 m asl, northwestern Argentina) reveal a high-resolution multi-proxy data set of climate change and human impact for the past ca. 2000 years. Comparison of the lake sediment data set for the 20th century (sediment mass accumulation rates MARs, pollen spectra, nutrient and charcoal fluxes) with independent dendroecological data from the catchment (fire scars, tree growth) and long regional precipitation series (from 1934 onwards) show that (1) the lake sediment data set is internally highly consistent and compares well with independent data sets, (2) the chronology of the sediment is reliable, (3) large fires (1940s, 1983/1984–1989) as documented in the local fire scar frequency are recorded in the charcoal flux to the lake sediments and coincide with low wet-season precipitation rates (e.g., 1940s, 1983/1984) and/or high interannual precipitation variability (late 1940s), and (4) the regional increase in precipitation after 1970 is recorded in an increase in the MARs (L. Rodeo from 100 to 390 mg cm−2 yr−1) and in an increase in fern spores reflecting wet vegetation. The most significant change in MARs and nutrient fluxes (Corg and P) of the past 2000 years is observed with the transition from the Inca Empire to the Spanish Conquest around 1600 AD. Compared with the pre-17th century conditions, MARs increased by a factor of ca. 5 to >8 (to 800 +130, −280 mg cm−2 yr−1), PO4 fluxes increased by a factor of 7, and Corg fluxes by a factor of 10.5 for the time between 1640 and 1930 AD. 17th to 19th century MARs and nutrient fluxes also exceed 20th century values. Excess Pb deposition as indicated by a significant increase in Pb/Zr and Pb/Rb ratios in the sediments after the 1950s coincides with a rapid expansion of the regional mining industry. Excess Pb is interpreted as atmospheric deposition and direct human impact due to Pb smelting.
Resumo:
This review of late-Holocene palaeoclimatology represents the results from a PAGES/CLIVAR Intersection Panel meeting that took place in June 2006. The review is in three parts: the principal high-resolution proxy disciplines (trees, corals, ice cores and documentary evidence), emphasizing current issues in their use for climate reconstruction; the various approaches that have been adopted to combine multiple climate proxy records to provide estimates of past annual-to-decadal timescale Northern Hemisphere surface temperatures and other climate variables, such as large-scale circulation indices; and the forcing histories used in climate model simulations of the past millennium. We discuss the need to develop a framework through which current and new approaches to interpreting these proxy data may be rigorously assessed using pseudo-proxies derived from climate model runs, where the `answer' is known. The article concludes with a list of recommendations. First, more raw proxy data are required from the diverse disciplines and from more locations, as well as replication, for all proxy sources, of the basic raw measurements to improve absolute dating, and to better distinguish the proxy climate signal from noise. Second, more effort is required to improve the understanding of what individual proxies respond to, supported by more site measurements and process studies. These activities should also be mindful of the correlation structure of instrumental data, indicating which adjacent proxy records ought to be in agreement and which not. Third, large-scale climate reconstructions should be attempted using a wide variety of techniques, emphasizing those for which quantified errors can be estimated at specified timescales. Fourth, a greater use of climate model simulations is needed to guide the choice of reconstruction techniques (the pseudo-proxy concept) and possibly help determine where, given limited resources, future sampling should be concentrated.
Resumo:
There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG). This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter temperatures. Secondly, for the Atlantic region, the Southern Ocean and the North Pacific, possible changes in the characteristics of the Atlantic meridional overturning circulation are crucial. Thirdly, the presence of remnant continental ice from the preceding glacial has shown to be important when determining the timing of maximum LIG warmth in the Northern Hemisphere. Finally, the results reveal that changes in the monsoon regime exert a strong control on the evolution of LIG temperatures over parts of Africa and India. By listing these inter-model differences, we provide a starting point for future proxy-data studies and the sensitivity experiments needed to constrain the climate simulations and to further enhance our understanding of the temperature evolution of the LIG period.
Archaeological silence and ecorefuges: arid events in the Puna of Atacama during the Middle Holocene
Resumo:
This paper briefly summarizes presearch concerning the mid-Holocene in the western slope of the puna de Atacama (20–25°S). Proxy data and dates from palynological, limnological, geomorphological archives were compared with data recovered from the archaeological sites in high altitude basins, intermediate ravines and piemontane paleowetlands. Due to exceptionally favorable conditions, numerous Early Holocene archaeological sites were found. In contrast, the lack of occupations in previously populated areas suggests a decline in human activity during the arid mid-Holocene. In this context, two key concepts are introduced: ecorefuge or ecological refuge, and archaeological silence (silencio arqueológico). The first refers to the particular favorable locations occupied by human groups during the mid-Holocene. The second provides a better understanding about the impact of the arid interval during this period on human adaptations in the most barren territories of the New World.
Resumo:
Northwestern North America has one of the highest rates of recent temperature increase in the world, but the putative “divergence problem” in dendroclimatology potentially limits the ability of tree-ring proxy data at high latitudes to provide long-term context for current anthropogenic change. Here, summer temperatures are reconstructed from a Picea glauca maximum latewood density (MXD) chronology that shows a stable relationship to regional temperatures and spans most of the last millennium at the Firth River in northeastern Alaska. The warmest epoch in the last nine centuries is estimated to have occurred during the late twentieth century, with average temperatures over the last 30 yr of the reconstruction developed for this study [1973–2002 in the Common Era (CE)] approximately 1.3° ± 0.4°C warmer than the long-term preindustrial mean (1100–1850 CE), a change associated with rapid increases in greenhouse gases. Prior to the late twentieth century, multidecadal temperature fluctuations covary broadly with changes in natural radiative forcing. The findings presented here emphasize that tree-ring proxies can provide reliable indicators of temperature variability even in a rapidly warming climate.
Resumo:
A well-dated suite of Lake Van climate-proxy data covering the last 360 ka documents environmental changes over 4 glacial/interglacial cycles in Eastern Anatolia, Turkey. The picture of cold and dry glacials and warm and wet interglacials emerging from pollen, organic carbon, authigenic carbonate content, elemental profiling by XRF and lithological analyses is inconsistent with classical interpretation of ox- ygen isotopic composition of carbonates pointing to a more complex pattern in Lake Van region. Detailed analysis of glacial terminations allows for the constraining of a depositional model explaining different patterns observed in all the proxies. We hypothesize that variations in relative contribution of rainfall, snowmelt and glacier meltwater recharging the basin have a very important role for all sedimentary processes in Lake Van. Lake level of glacial Lake Van, predominantly fed by snowmelt, was low, the water column was oxic, and carbonates precipitating in the epilimnion recorded the light isotopic signature of inflow. During terminations, increasing rainfall and significant supply of mountain glaciers' meltwater contributed to lake level rise. Increased rainfall enhanced density gradients in the water column, and hindered mixing leading to development of bottom-water anoxia. Carbonates precipitating during terminations show large fluctuations in their isotopic composition. Full interglacial conditions in Lake Van are characterized by high or slowly falling lake level. Rainfall and snowmelt feed the lake but due to re-established mixing, the isotopic composition of authigenic carbonates is heavier and closer to that of evaporation-influenced lake water than that of runoff representing snowmelt and atmospheric precipitation.
Resumo:
Water stable isotope ratios and net snow accumulation in ice cores are commonly interpreted as temperature or precipitation proxies. However, only in a few cases has a direct calibration with instrumental data been attempted. In this study we took advantage of the dense network of observations in the European Alpine region to rigorously test the relationship of the annual and seasonal resolved proxy data from two highly resolved ice cores with local temperature and precipitation. We focused on the time period 1961–2001 with the highest amount and quality of meteorological data and the minimal uncertainty in ice core dating (±1 year). The two ice cores were retrieved from the Fiescherhorn glacier (northern Alps, 3900 m a.s.l.), and Grenzgletscher (southern Alps, 4200 m a.s.l.). A parallel core from the Fiescherhorn glacier allowed assessing the reproducibility of the ice core proxy data. Due to the orographic barrier, the two flanks of the Alpine chain are affected by distinct patterns of precipitation. The different location of the two glaciers therefore offers a unique opportunity to test whether such a specific setting is reflected in the proxy data. On a seasonal scale a high fraction of δ18O variability was explained by the seasonal cycle of temperature (~60% for the ice cores, ~70% for the nearby stations of the Global Network of Isotopes in Precipitation – GNIP). When the seasonality is removed, the correlations decrease for all sites, indicating that factors other than temperature such as changing moisture sources and/or precipitation regimes affect the isotopic signal on this timescale. Post-depositional phenomena may additionally modify the ice core data. On an annual scale, the δ18O/temperature relationship was significant at the Fiescherhorn, whereas for Grenzgletscher this was the case only when weighting the temperature with precipitation. In both cases the fraction of interannual temperature variability explained was ~20%, comparable to the values obtained from the GNIP stations data. Consistently with previous studies, we found an altitude effect for the δ18O of −0.17‰/100 m for an extended elevation range combining data of the two ice core sites and four GNIP stations. Significant correlations between net accumulation and precipitation were observed for Grenzgletscher during the entire period of investigation, whereas for Fiescherhorn this was the case only for the less recent period (1961–1977). Local phenomena, probably related to wind, seem to partly disturb the Fiescherhorn accumulation record. Spatial correlation analysis shows the two glaciers to be influenced by different precipitation regimes, with the Grenzgletscher reflecting the characteristic precipitation regime south of the Alps and the Fiescherhorn accumulation showing a pattern more closely linked to northern Alpine stations.
Resumo:
This study aims to evaluate the direct effects of anthropogenic deforestation on simulated climate at two contrasting periods in the Holocene, ~6 and ~0.2 k BP in Europe. We apply We apply the Rossby Centre regional climate model RCA3, a regional climate model with 50 km spatial resolution, for both time periods, considering three alternative descriptions of the past vegetation: (i) potential natural vegetation (V) simulated by the dynamic vegetation model LPJ-GUESS, (ii) potential vegetation with anthropogenic land use (deforestation) from the HYDE3.1 (History Database of the Global Environment) scenario (V + H3.1), and (iii) potential vegetation with anthropogenic land use from the KK10 scenario (V + KK10). The climate model results show that the simulated effects of deforestation depend on both local/regional climate and vegetation characteristics. At ~6 k BP the extent of simulated deforestation in Europe is generally small, but there are areas where deforestation is large enough to produce significant differences in summer temperatures of 0.5–1 °C. At ~0.2 k BP, extensive deforestation, particularly according to the KK10 model, leads to significant temperature differences in large parts of Europe in both winter and summer. In winter, deforestation leads to lower temperatures because of the differences in albedo between forested and unforested areas, particularly in the snow-covered regions. In summer, deforestation leads to higher temperatures in central and eastern Europe because evapotranspiration from unforested areas is lower than from forests. Summer evaporation is already limited in the southernmost parts of Europe under potential vegetation conditions and, therefore, cannot become much lower. Accordingly, the albedo effect dominates in southern Europe also in summer, which implies that deforestation causes a decrease in temperatures. Differences in summer temperature due to deforestation range from −1 °C in south-western Europe to +1 °C in eastern Europe. The choice of anthropogenic land-cover scenario has a significant influence on the simulated climate, but uncertainties in palaeoclimate proxy data for the two time periods do not allow for a definitive discrimination among climate model results.
Resumo:
Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth’s recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe.
Resumo:
The heat of summer 2003 in Western and Central Europe was claimed to be unprecedented since the Middle Ages on the basis of grape harvest data (GHD) and late wood maximum density (MXD) data from trees in the Alps. This paper shows that the authors of these studies overlooked the fact that the heat and drought in Switzerland in 1540 likely exceeded the amplitude of the previous hottest summer of 2003, because the persistent temperature and precipitation anomaly in that year, described in an abundant and coherent body of documentary evidence, severely affected the reliability of GHD and tree-rings as proxy-indicators for temperature estimates. Spring–summer (AMJJ) temperature anomalies of 4.7 °C to 6.8 °C being significantly higher than in 2003 were assessed for 1540 from a new long Swiss GHD series (1444 to 2011). During the climax of the heat wave in early August the grapes desiccated on the vine, which caused many vine-growers to interrupt or postpone the harvest despite full grape maturity until after the next spell of rain. Likewise, the leaves of many trees withered and fell to the ground under extreme drought stress as would usually be expected in late autumn. It remains to be determined by further research whether and how far this result obtained from local analyses can be spatially extrapolated. Based on the temperature estimates for Switzerland it is assumed from a great number of coherent qualitative documentary evidence about the outstanding heat drought in 1540 that AMJJ temperatures were likely more extreme in neighbouring regions of Western and Central Europe than in 2003. Considering the significance of soil moisture deficits for record breaking heat waves, these results still need to be validated with estimated seasonal precipitation. It is concluded that biological proxy data may not properly reveal record breaking heat and drought events. Such assessments thus need to be complemented with the critical study of contemporary evidence from documentary sources which provide coherent and detailed data about weather extremes and related impacts on human, ecological and social systems.