19 resultados para Proto-Oncogene Proteins c-fos

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently reported that brief, remotely controlled intrameal hepatic-portal vein infusions of glucagon-like peptide-1 (GLP-1) reduced spontaneous meal size in rats. To investigate the neurobehavioural correlates of this effect, we equipped male Sprague-Dawley rats with hepatic-portal vein catheters and assessed (i) the effect on eating of remotely triggered infusions of GLP-1 (1 nmol/kg, 5 min) or vehicle during the first nocturnal meal after 3 h of food deprivation and (ii) the effect of identical infusions performed at dark onset on c-Fos expression in several brain areas involved in the control of eating. GLP-1 reduced (P < 0.05) the size of the first nocturnal meal and increased its satiety ratio. Also, GLP-1 increased (P < 0.05) the number of c-Fos-expressing cells in the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala, but not in the arcuate or paraventricular hypothalamic nuclei. These data suggest that the nucleus tractus solitarii, the area postrema and the central nucleus of the amygdala play a role in the eating-inhibitory actions of GLP-1 infused into the hepatic-portal vein; it remains to be established whether activation of these brain nuclei reflect satiation, aversion, or both.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proto-oncogene c-Myc is involved in early neoplastic transformations. Two consensus Lef/Tcf binding elements (TBE) were found to be prerequisite for transcriptional transactivation by the armadillo proteins beta-catenin and plakoglobin (PG) together with Tcf4 in human neoplastic cells. In epidermal keratinocytes, c-Myc was reported to be repressed by Lef-1 and PG. Using reporter gene assays, here we demonstrate that deletion of the two consensus TBE fails to abrogate transcriptional regulation by Lef-1/PG in wildtype and beta-catenin-/- keratinocytes, while it reduces transcription in pre-neoplastic PG-/- keratinocytes. We identified a TBE sequence variant downstream of the major transcriptional initiation site that binds Lef-1 in vitro and in vivo, and its mutation compromised transcriptional regulation by Lef-1/PG. Collectively, this study demonstrates that the two consensus TBE's reported in neoplastic cells are dispensable for c-Myc regulation in normal keratinocytes, which instead use a novel TBE sequence variant. This unprecedented finding may have important implications for armadillo target genes involved in carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BCL6 proto-oncogene encodes a transcriptional repressor that is required for germinal center (GC) formation and whose deregulation by genomic lesions is implicated in the pathogenesis of GC-derived diffuse large B cell lymphoma (DLBCL) and, less frequently, follicular lymphoma (FL). The biological function of BCL6 is only partially understood because no more than a few genes have been functionally characterized as direct targets of BCL6 transrepression activity. Here we report that the anti-apoptotic proto-oncogene BCL2 is a direct target of BCL6 in GC B cells. BCL6 binds to the BCL2 promoter region by interacting with the transcriptional activator Miz1 and suppresses Miz1-induced activation of BCL2 expression. BCL6-mediated suppression of BCL2 is lost in FL and DLBCL, where the 2 proteins are pathologically coexpressed, because of BCL2 chromosomal translocations and other mechanisms, including Miz1 deregulation and somatic mutations in the BCL2 promoter region. These results identify an important function for BCL6 in facilitating apoptosis of GC B cells via suppression of BCL2, and suggest that blocking this pathway is critical for lymphomagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canine distemper virus (CDV) causes in dogs a severe systemic infection, with a high frequency of demyelinating encephalitis. Among the six genes transcribed by CDV, the P gene encodes the polymerase cofactor protein (P) as well as two additional nonstructural proteins, C and V; of these V was shown to act as a virulence factor. We investigated the molecular mechanisms by which the P gene products of the neurovirulent CDV A75/17 strain disrupt type I interferon (IFN-alpha/beta)-induced signaling that results in the establishment of the antiviral state. Using recombinant knockout A75/17 viruses, the V protein was identified as the main antagonist of IFN-alpha/beta-mediated signaling. Importantly, immunofluorescence analysis illustrated that the inhibition of IFN-alpha/beta-mediated signaling correlated with impaired STAT1/STAT2 nuclear import, whereas the phosphorylation state of these proteins was not affected. Coimmunoprecipitation assays identified the N-terminal region of V (VNT) responsible for STAT1 targeting, which correlated with its ability to inhibit the activity of the IFN-alpha/beta-mediated antiviral state. Conversely, while the C-terminal domain of V (VCT) could not function autonomously, when fused to VNT it optimally interacted with STAT2 and subsequently efficiently suppressed the IFN-alpha/beta-mediated signaling pathway. The latter result was further supported by a single mutation at position 110 within the VNT domain of CDV V protein, resulting in a mutant that lost STAT1 binding while retaining a partial STAT2 association. Taken together, our results identified the CDV VNT and VCT as two essential modules that complement each other to interfere with the antiviral state induced by IFN-alpha/beta-mediated signaling. Hence, our experiments reveal a novel mechanism of IFN-alpha/beta evasion among the morbilliviruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amygdala has been studied extensively for its critical role in associative fear conditioning in animals and humans. Noxious stimuli, such as those used for fear conditioning, are most effective in eliciting behavioral responses and amygdala activation when experienced in an unpredictable manner. Here, we show, using a translational approach in mice and humans, that unpredictability per se without interaction with motivational information is sufficient to induce sustained neural activity in the amygdala and to elicit anxiety-like behavior. Exposing mice to mere temporal unpredictability within a time series of neutral sound pulses in an otherwise neutral sensory environment increased expression of the immediate-early gene c-fos and prevented rapid habituation of single neuron activity in the basolateral amygdala. At the behavioral level, unpredictable, but not predictable, auditory stimulation induced avoidance and anxiety-like behavior. In humans, functional magnetic resonance imaging revealed that temporal unpredictably causes sustained neural activity in amygdala and anxiety-like behavior as quantified by enhanced attention toward emotional faces. Our findings show that unpredictability per se is an important feature of the sensory environment influencing habituation of neuronal activity in amygdala and emotional behavior and indicate that regulation of amygdala habituation represents an evolutionary-conserved mechanism for adapting behavior in anticipation of temporally unpredictable events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case report of a 66-year-old woman with episodes of amaurosis fugax and hemicranic headache with otherwise normal ophthalmologic and neurological examinations and normal imaging. While ESR was in the normal range for patient's age, acute phase proteins (C-reactive protein and fibrinogen) were elevated. Giant cell arteritis was proved by temporal artery biopsy. Giant cell arteritis should be considered as an important differential diagnosis of amaurosis fugax even in patients with normal ESR. Acute phase protein testing can give relevant diagnostic information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saliva can reach mineralized surfaces in the oral cavity; however, the relationship between saliva and bone resorption is unclear. Herein, we examined whether saliva affects the process of osteoclastogenesis in vitro. We used murine bone marrow cultures to study osteoclast formation. The addition of fresh sterile saliva eliminated the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase (TRAP). In line with the histochemical staining, saliva substantially reduced gene expression of cathepsin K, calcitonin receptor, and TRAP. Addition of saliva led to considerably decreased gene expression of receptor activator of nuclear factor kappa-B (RANK) and, to a lesser extent, that of c-fms. The respective master regulators of osteoclastogenesis (c-fos and NFATc1) and the downstream cell fusion genes (DC-STAMP and Atp6v0d2) showed decreased expression after the addition of saliva. Among the costimulatory molecules for osteoclastogenesis, only OSCAR showed decreased expression. In contrast, CD40, CD80, and CD86-all costimulatory molecules of phagocytic cells-were increasingly expressed with saliva. The phagocytic capacity of the cells was confirmed by latex bead ingestion. Based on these in vitro results, it can be concluded that saliva suppresses osteoclastogenesis and leads to the development of a phagocytic cell phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor budding (single tumor cells or small tumor cell clusters) at the invasion front of colorectal cancer (CRC) is an adverse prognostic indicator linked to epithelial-mesenchymal transition. This study characterized the immunogenicity of tumor buds by analyzing the expression of the major histocompatibility complex (MHC) class I in the invasive tumor cell compartment. We hypothesized that maintenance of a functional MHC-I antigen presentation pathway, activation of CD8+ T-cells, and release of antitumoral effector molecules such as cytotoxic granule-associated RNA binding protein (TIA1) in the tumor microenvironment can counter tumor budding and favor prolonged patient outcome. Therefore, a well-characterized multipunch tissue microarray of 220 CRCs was profiled for MHC-I, CD8, and TIA1 by immunohistochemistry. Topographic expression analysis of MHC-I was performed using whole tissue sections (n = 100). Kirsten rat sarcoma viral oncogene homolog (KRAS) and B-Raf proto-oncogene, serine/threonine kinase (BRAF) mutations, mismatch repair (MMR) protein expression, and CpG-island methylator phenotype (CIMP) were investigated. Our results demonstrated that membranous MHC-I expression is frequently down-regulated in the process of invasion. Maintained MHC-I at the invasion front strongly predicted low-grade tumor budding (P = 0.0004). Triple-positive MHC-I/CD8/TIA1 in the tumor microenvironment predicted early T-stage (P = 0.0031), absence of lymph node metastasis (P = 0.0348), lymphatic (P = 0.0119) and venous invasion (P = 0.006), and highly favorable 5-year survival (90.9% vs 39.3% in triple-negative patients; P = 0.0032). MHC-I loss was frequent in KRAS-mutated, CD8+ CRC (P = 0.0228). No relationship was observed with CIMP, MMR, or BRAF mutation. In conclusion, tumor buds may evade immune recognition through downregulation of membranous MHC-I. A combined profile of MHC-I/CD8/TIA1 improves the prognostic value of antitumoral effector cells and should be preferred to a single marker approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Osteoclasts rapidly form on the surface of bone chips at augmentation sites. The underlying molecular mechanism, however, is unclear. Soluble factors released from bone chips in vitro have a robust impact on mesenchymal cell differentiation. Whether these soluble factors change the differentiation of hematopoietic cells into osteoclasts remains unknown. METHODS Osteoclastogenesis, the formation of tartrate-resistant acid phosphatase-positive multinucleated cells, was studied with murine bone marrow cultures exposed to RANKL and M-CSF, and conditioned medium from fresh (BCM) and demineralized bone matrix (DCM). Histochemical staining, gene and protein expression, as well as viability assays were performed. RESULTS This study shows that BCM had no impact on osteoclastogenesis. However, when BCM was heated to 85°C (BCMh), the number of tartrate-resistant acid phosphatase-positive multinucleated cells that developed in the presence of RANKL and M-CSF approximately doubled. In line with the histochemical observations, there was a trend that BCMh increased expression of osteoclast marker genes, in particular the transcription factor c-fos. The expression of c-fos was significantly reduced by the TGF-β receptor I antagonist SB431542. DCM significantly stimulated osteoclastogenesis, independent of thermal processing. CONCLUSIONS These data demonstrate that activated BCM by heat and DBM are able to stimulate osteoclastogenesis in vitro. These in vitro results support the notion that the resorption of autografts may be supported by as yet less defined paracrine mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-cell intercalation is used in several developmental processes to shape the normal body plan. There is no clear evidence that intercalation is involved in pathologies. Here we use the proto-oncogene myc to study a process analogous to early phase of tumour expansion: myc-induced cell competition. Cell competition is a conserved mechanism driving the elimination of slow-proliferating cells (so-called 'losers') by faster-proliferating neighbours (so-called 'winners') through apoptosis and is important in preventing developmental malformations and maintain tissue fitness. Here we show, using long-term live imaging of myc-driven competition in the Drosophila pupal notum and in the wing imaginal disc, that the probability of elimination of loser cells correlates with the surface of contact shared with winners. As such, modifying loser-winner interface morphology can modulate the strength of competition. We further show that elimination of loser clones requires winner-loser cell mixing through cell-cell intercalation. Cell mixing is driven by differential growth and the high tension at winner-winner interfaces relative to winner-loser and loser-loser interfaces, which leads to a preferential stabilization of winner-loser contacts and reduction of clone compactness over time. Differences in tension are generated by a relative difference in F-actin levels between loser and winner junctions, induced by differential levels of the membrane lipid phosphatidylinositol (3,4,5)-trisphosphate. Our results establish the first link between cell-cell intercalation induced by a proto-oncogene and how it promotes invasiveness and destruction of healthy tissues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The wild-type canine distemper virus (CDV) strain A75/17 induces a non-cytocidal infection in cultures of canine footpad keratinocytes (CFKs) but produces very little progeny virus. After only three passages in CFKs, the virus produced 100-fold more progeny and induced a limited cytopathic effect. Sequence analysis of the CFK-adapted virus revealed only three amino acid differences, of which one was located in each the P/V/C, M and H proteins. In order to assess which amino acid changes were responsible for the increase of infectious virus production and altered phenotype of infection, we generated a series of recombinant viruses. Their analysis showed that the altered P/V/C proteins were responsible for the higher levels of virus progeny formation and that the amino acid change in the cytoplasmic tail of the H protein was the major determinant of cytopathogenicity.