45 resultados para Proto-Oncogene Proteins c-bcl-2

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a 'tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acetaminophen (N-acetyl-para-aminophenol (APAP), paracetamol) is a commonly used analgesic and antipyretic agent. Although considered safe at therapeutic doses, accidental or intentional overdose causes acute liver failure characterized by centrilobular hepatic necrosis with high morbidity and mortality. Although many molecular aspects of APAP-induced cell death have been described, no conclusive mechanism has been proposed. We recently identified TNF-related apoptosis-inducing ligand (TRAIL) and c-Jun kinase (JNK)-dependent activation of the pro-apoptotic Bcl-2 homolog Bim as an important apoptosis amplification pathway in hepatocytes. In this study, we, thus, investigated the role of TRAIL, c-JNK and Bim in APAP-induced liver damage. Our results demonstrate that TRAIL strongly synergizes with APAP in inducing cell death in hepatocyte-like cells lines and primary hepatocyte. Furthermore, we found that APAP strongly induces the expression of Bim in a c-JNK-dependent manner. Consequently, TRAIL- or Bim-deficient mice were substantially protected from APAP-induced liver damage. This study identifies the TRAIL-JNK-Bim axis as a novel target in the treatment of APAP-induced liver damage and substantiates its general role in hepatocyte death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To determine whether a specifically designed bispecific (Bcl-2/Bcl-xL) antisense oligonucleotide (ASO) induces apoptosis and enhances chemosensitivity in human prostate cancer LNCaP cells, as Bcl-2 and Bcl-xL are both anti-apoptotic genes associated with treatment resistance and tumour progression in many malignancies, including prostate cancer. MATERIALS AND METHODS: Inhibition of Bcl-2 and Bcl-xL expression by the bispecific ASO was evaluated using real-time reverse transcription-polymerase chain reaction and Western blotting, while growth inhibition and induction of apoptosis were analysed by a crystal violet assay, flow cytometry and Western blotting of apoptosis-relevant proteins. The effect of combined treatment with bispecific ASO and chemotherapy or small-interference RNA (siRNA) targeting the clusterin gene was also investigated. RESULTS: Bispecific ASO reduced Bcl-2 and Bcl-xL expression in LNCaP cells in a dose-dependent manner. There was cell growth inhibition, increases in the sub-G0-G1 fraction, and cleavage of caspase-3 and poly(ADP-Ribose) polymerase proteins in LNCaP cells after bispecific ASO treatment. Interestingly, Bcl-2/Bcl-xL bispecific ASO treatment also resulted in the down-regulation of Mcl-1 and up-regulation of Bax. The sensitivity of LNCaP cells to mitoxantrone, docetaxel or paclitaxel was significantly increased, reducing the 50% inhibitory concentration by 45%, 80% or 90%, respectively. Furthermore, the apoptotic induction by Bcl-2/Bcl-xL bispecific ASO was synergistically enhanced by siRNA-mediated inhibition of clusterin, a cytoprotective chaperone that interacts with and inhibits activated Bax. CONCLUSIONS: These findings support the concept of the targeted suppression of Bcl-2 anti-apoptotic family members using multitarget inhibition strategies for prostate cancer, through the effective induction of apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of anti-apoptotic Bcl-2 plays a role in prostate cancer progression, particularly in transformation to androgen-independent disease. Androgen-independent prostate cancers have been shown to harbor Bcl-2 gene copy number gains frequently suggesting that this genetic alteration might play a role in Bcl-2 overexpression. The relation of Bcl-2 overexpression and copy number gains or translocation of the BCL-2 gene in prostate cancer under hormone-naïve conditions is unknown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proapoptotic Bcl-2 homolog Bim was shown to control the apoptosis of both T cells and hepatocytes. This dual role of Bim might be particularly relevant for the development of viral hepatitis, in which both the sensitivity of hepatocytes to apoptosis stimuli and the persistence of cytotoxic T cells are essential factors for the outcome of the disease. The relevance of Bim in regulating survival of cytotoxic T cells or induction of hepatocyte death has only been investigated in separate systems, and their relative contributions to the pathogenesis of T cell-mediated hepatitis remain unclear. Using the highly dynamic model system of lymphocytic choriomeningitis virus-mediated hepatitis and bone marrow chimeras, we found that Bim has a dual role in the development of lymphocytic choriomeningitis virus-induced, T cell-mediated hepatitis. Although the absence of Bim in parenchymal cells led to markedly attenuated liver damage, loss of Bim in the lymphoid compartment moderately enhanced hepatitis. However, when both effects were combined in Bim(-/-) mice, the effect of Bim deficiency in the lymphoid compartment was overcompensated for by the reduced sensitivity of Bim(-/-) hepatocytes to T cell-induced apoptosis, resulting in the protection of Bim(-/-) mice from hepatitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BOK/MTD was discovered as a protein that binds to the anti-apoptotic Bcl-2 family member MCL-1 and shares extensive amino-acid sequence similarity to BAX and BAK, which are essential for the effector phase of apoptosis. Therefore, and on the basis of its reported expression pattern, BOK is thought to function in a BAX/BAK-like pro-apoptotic manner in female reproductive tissues. In order to determine the function of BOK, we examined its expression in diverse tissues and investigated the consequences of its loss in Bok(-/-) mice. We confirmed that Bok mRNA is prominently expressed in the ovaries and uterus, but also observed that it is present at readily detectable levels in several other tissues such as the brain and myeloid cells. Bok(-/-) mice were produced at the expected Mendelian ratio, appeared outwardly normal and proved fertile. Histological examination revealed that major organs in Bok(-/-) mice displayed no morphological aberrations. Although several human cancers have somatically acquired copy number loss of the Bok gene and BOK is expressed in B lymphoid cells, we found that its deficiency did not accelerate lymphoma development in Eμ-Myc transgenic mice. Collectively, these results indicate that Bok may have a role that largely overlaps with that of other members of the Bcl-2 family, or may have a function restricted to specific stress stimuli and/or tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To assess whether Bcl-2, an inhibitor of the apoptotic cascade, can predict response to neoadjuvant chemotherapy in patients with urothelial cancer of the bladder (UCB). METHODS Bcl-2 expression was analyzed in 2 different tissue microarrays (TMAs). One TMA was constructed of primary tumors and their corresponding lymph node (LN) metastases from 152 patients with chemotherapy-naive UCB treated by cystectomy and pelvic lymphadenectomy (chemotherapy-naive TMA cohort). The other TMA was constructed of tumor samples obtained from 55 patients with UCB before neoadjuvant chemotherapy (transurethral resection of the bladder cancer) and after cystectomy with pelvic lymphadenectomy (residual primary tumor [ypT+], n = 38); residual LN metastases [ypN+], n = 24) (prechemotherapy/postchemotherapy TMA cohort). Bcl-2 overexpression was defined as 10% or more cancer cells showing cytoplasmic immunoreactivity. RESULTS In both TMA cohorts, Bcl-2 overexpression was significantly (P<0.05) more frequent in LN metastases than in primary tumors (chemotherapy-naive TMA group: 18/148 [12%] in primary tumors vs. 39/143 [27%] in metastases; postchemotherapy TMA: ypT+7/35 [20%] vs. ypN+11/19 [58%]). In the neoadjuvant setting, patients with Bcl-2 overexpression in transurethral resection of the bladder cancer specimens showed significantly (P = 0.04) higher ypT stages and less regression in their cystectomy specimens than did the control group, and only one-eighth (13%) had complete tumor regression (ypT0 ypN0). In survival analyses, only histopathological parameters added significant prognostic information. CONCLUSIONS Bcl-2 overexpression in chemotherapy-naive primary bladder cancer is related to poor chemotherapy response and might help to select likely nonresponders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the synthesis of (5 S )-5- C -butylthymidine ( 5a ), of the (5 S )-5- C -butyl- and the (5 S )-5- C -isopentyl derivatives 16a and 16b of 2-deoxy-5-methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin-5-al 1 , the alkyl chain at C(5) is introduced via Wittig chemistry to selectively yield the ( Z )-olefin derivatives 3a and 3b ( Scheme 2 ). The secondary OH function at C(5) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5 S )-configuration in high diastereoisomer purity (de=94%). The corresponding 2-deoxy-5-methylcytidine derivatives are obtained from the protected 5-alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields ( Scheme 3 ). Application of the same strategy to the purine nucleoside 2-deoxyadenine to obtain 5- C -butyl-2-deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride-based reducing agents ( Scheme 4 ).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proto-oncogene c-Myc is involved in early neoplastic transformations. Two consensus Lef/Tcf binding elements (TBE) were found to be prerequisite for transcriptional transactivation by the armadillo proteins beta-catenin and plakoglobin (PG) together with Tcf4 in human neoplastic cells. In epidermal keratinocytes, c-Myc was reported to be repressed by Lef-1 and PG. Using reporter gene assays, here we demonstrate that deletion of the two consensus TBE fails to abrogate transcriptional regulation by Lef-1/PG in wildtype and beta-catenin-/- keratinocytes, while it reduces transcription in pre-neoplastic PG-/- keratinocytes. We identified a TBE sequence variant downstream of the major transcriptional initiation site that binds Lef-1 in vitro and in vivo, and its mutation compromised transcriptional regulation by Lef-1/PG. Collectively, this study demonstrates that the two consensus TBE's reported in neoplastic cells are dispensable for c-Myc regulation in normal keratinocytes, which instead use a novel TBE sequence variant. This unprecedented finding may have important implications for armadillo target genes involved in carcinogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BCL6 proto-oncogene encodes a transcriptional repressor that is required for germinal center (GC) formation and whose deregulation by genomic lesions is implicated in the pathogenesis of GC-derived diffuse large B cell lymphoma (DLBCL) and, less frequently, follicular lymphoma (FL). The biological function of BCL6 is only partially understood because no more than a few genes have been functionally characterized as direct targets of BCL6 transrepression activity. Here we report that the anti-apoptotic proto-oncogene BCL2 is a direct target of BCL6 in GC B cells. BCL6 binds to the BCL2 promoter region by interacting with the transcriptional activator Miz1 and suppresses Miz1-induced activation of BCL2 expression. BCL6-mediated suppression of BCL2 is lost in FL and DLBCL, where the 2 proteins are pathologically coexpressed, because of BCL2 chromosomal translocations and other mechanisms, including Miz1 deregulation and somatic mutations in the BCL2 promoter region. These results identify an important function for BCL6 in facilitating apoptosis of GC B cells via suppression of BCL2, and suggest that blocking this pathway is critical for lymphomagenesis.