18 resultados para Prothrombin time
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The WHO scheme for prothrombin time (PT) standardization has been limited in application, because of its difficulties in implementation, particularly the need for mandatory manual PT testing and for local provision of thromboplastin international reference preparations (IRP).
Resumo:
Two major difficulties arise when taking blood samples in children: the challenge of venous access and the comparatively large amount of blood required.
Resumo:
BACKGROUND: Bleeding is a frequent complication during surgery. The intraoperative administration of blood products, including packed red blood cells, platelets and fresh frozen plasma (FFP), is often live saving. Complications of blood transfusions contribute considerably to perioperative costs and blood product resources are limited. Consequently, strategies to optimize the decision to transfuse are needed. Bleeding during surgery is a dynamic process and may result in major blood loss and coagulopathy due to dilution and consumption. The indication for transfusion should be based on reliable coagulation studies. While hemoglobin levels and platelet counts are available within 15 minutes, standard coagulation studies require one hour. Therefore, the decision to administer FFP has to be made in the absence of any data. Point of care testing of prothrombin time ensures that one major parameter of coagulation is available in the operation theatre within minutes. It is fast, easy to perform, inexpensive and may enable physicians to rationally determine the need for FFP. METHODS/DESIGN: The objective of the POC-OP trial is to determine the effectiveness of point of care prothrombin time testing to reduce the administration of FFP. It is a patient and assessor blind, single center randomized controlled parallel group trial in 220 patients aged between 18 and 90 years undergoing major surgery (any type, except cardiac surgery and liver transplantation) with an estimated blood loss during surgery exceeding 20% of the calculated total blood volume or a requirement of FFP according to the judgment of the physicians in charge. Patients are randomized to usual care plus point of care prothrombin time testing or usual care alone without point of care testing. The primary outcome is the relative risk to receive any FFP perioperatively. The inclusion of 110 patients per group will yield more than 80% power to detect a clinically relevant relative risk of 0.60 to receive FFP of the experimental as compared with the control group. DISCUSSION: Point of care prothrombin time testing in the operation theatre may reduce the administration of FFP considerably, which in turn may decrease costs and complications usually associated with the administration of blood products. TRIAL REGISTRATION: NCT00656396.
Resumo:
There is no accepted way of measuring prothrombin time without time loss for patients undergoing major surgery who are at risk of intraoperative dilution and consumption coagulopathy due to bleeding and volume replacement with crystalloids or colloids. Decisions to transfuse fresh frozen plasma and procoagulatory drugs have to rely on clinical judgment in these situations. Point-of-care devices are considerably faster than the standard laboratory methods. In this study we assessed the accuracy of a Point-of-care (PoC) device measuring prothrombin time compared to the standard laboratory method. Patients undergoing major surgery and intensive care unit patients were included. PoC prothrombin time was measured by CoaguChek XS Plus (Roche Diagnostics, Switzerland). PoC and reference tests were performed independently and interpreted under blinded conditions. Using a cut-off prothrombin time of 50%, we calculated diagnostic accuracy measures, plotted a receiver operating characteristic (ROC) curve and tested for equivalence between the two methods. PoC sensitivity and specificity were 95% (95% CI 77%, 100%) and 95% (95% CI 91%, 98%) respectively. The negative likelihood ratio was 0.05 (95% CI 0.01, 0.32). The positive likelihood ratio was 19.57 (95% CI 10.62, 36.06). The area under the ROC curve was 0.988. Equivalence between the two methods was confirmed. CoaguChek XS Plus is a rapid and highly accurate test compared with the reference test. These findings suggest that PoC testing will be useful for monitoring intraoperative prothrombin time when coagulopathy is suspected. It could lead to a more rational use of expensive and limited blood bank resources.
Resumo:
BACKGROUND: The early hemodynamic normalization of polytrauma patients may lead to better survival outcomes. The aim of this study was to assess the diagnostic quality of trauma and physiological scores from widely used scoring systems in polytrauma patients. METHODS: In total, 770 patients with ISS > 16 who were admitted to a trauma center within the first 24 hours after injury were included in this retrospective study. The patients were subdivided into three groups: those who died on the day of admission, those who died within the first three days, and those who survived for longer than three days. ISS, NISS, APACHE II score, and prothrombin time were recorded at admission. RESULTS: The descriptive statistics for early death in polytrauma patients who died on the day of admission, 1--3 days after admission, and > 3 days after admission were: ISS of 41.0, 34.0, and 29.0, respectively; NISS of 50.0, 50.0, and 41.0, respectively; APACHE II score of 30.0, 25.0, and 15.0, respectively; and prothrombin time of 37.0%, 56.0%, and 84%, respectively. These data indicate that prothrombin time (AUC: 0.89) and APACHE II (AUC: 0.88) have the greatest prognostic utility for early death. CONCLUSION: The estimated densities of the scores may suggest a direction for resuscitative procedures in polytrauma patients.Trial registration: "Retrospektive Analysen in der Chirurgischen Intensivmedizin" StV01-2008.http://www.kek.zh.ch/internet/gesundheitsdirektion/kek/de/home.html.
Resumo:
INTRODUCTION: Rivaroxaban (RXA) is licensed for prophylaxis of venous thromboembolism after major orthopaedic surgery of the lower limbs. Currently, no test to quantify RXA in plasma has been validated in an inter-laboratory setting. Our study had three aims: to assess i) the feasibility of RXA quantification with a commercial anti-FXa assay, ii) its accuracy and precision in an inter-laboratory setting, and iii) the influence of 10mg of RXA on routine coagulation tests. METHODS: The same chromogenic anti-FXa assay (Hyphen BioMed) was used in all participating laboratories. RXA calibrators and sets of blinded probes (aim ii.) were prepared in vitro by spiking normal plasma. The precise RXA content was assessed by high-pressure liquid chromatography-tandem mass spectrometry. For ex-vivo studies (aim iii), plasma samples from 20 healthy volunteers taken before and 2 - 3hours after ingestion of 10mg of RXA were analyzed by participating laboratories. RESULTS: RXA can be assayed chromogenically. Among the participating laboratories, the mean accuracy and the mean coefficient of variation for precision of RXA quantification were 7.0% and 8.8%, respectively. Mean RXA concentration was 114±43?g/L .RXA significantly altered prothrombin time, activated partial thromboplastin time, factor analysis for intrinsic and extrinsic factors. Determinations of thrombin time, fibrinogen, FXIII and D-Dimer levels were not affected. CONCLUSIONS: RXA plasma levels can be quantified accurately and precisely by a chromogenic anti-FXa assay on different coagulometers in different laboratories. Ingestion of 10mg RXA results in significant alterations of both PT- and aPTT-based coagulation assays.
Resumo:
During the past two decades, orthotopic liver transplantation (OLT) emerged to the treatment of choice for patients with end-stage liver disease. In Switzerland, about 100 liver transplantations are performed every year, while the shortage of cadaveric organs considerably outmatches the demand. Common indications for OLT include cirrhosis due to alcoholic liver disease or chronic viral hepatitis related to hepatitis B or C, and hepatocellular carcinoma. With the advent of the new allocation policy in Switzerland in 2007, patients listed for OLT are mainly stratified based on the Model of End-stage Liver Disease (MELD) score. Using a patient's laboratory values for serum bilirubin, serum creatinin, and the international normalized ratio for prothrombin time (INR), the MELD score accurately predicts three-month mortality among patients on the waiting list. Compared to the pre-MELD era, patients with significantly higher MELD scores undergo transplantation which leads in turn to more complications and higher costs yet with a comparable outcome. Timely referral of potential candidates to a transplant center is crucial since thorough evaluation to rule out contraindications such as uncontrolled infection, extrahepatic malignancy or advanced cardiopulmonary disease is essential. Taken together, every patient presenting with acute liver failure, decompensated cirrhosis or suspected hepatocellular carcinoma should be evaluated in a center with liver transplantation capability.
Resumo:
We evaluated the score for disseminated intravascular coagulation (DIC) recently published by the International Society for Thrombosis and Haemostasis (ISTH) in a well-defined series of sepsis patients. Thirty-two patients suffering from severe sepsis and eight patients with septic shock were evaluated following the ISTH DIC score. Fibrin monomer and D-dimer were chosen as fibrin-related markers (FRM), respectively. DIC scores for nonsurvivors (n = 13) as well as for septic shock patients were higher (P < 0.04) compared with survivors and patients with severe sepsis, respectively. Using fibrin monomer and D-dimer, 30 and 25% of patients suffered from overt DIC. Overt DIC was associated with significantly elevated thrombin-antithrombin complexes and plasminogen activator inhibitor type-1 levels as well as with significantly lower factor VII clotting activity. Patients with overt DIC had a significantly higher risk of death and of developing septic shock. Since more than 95% of the sepsis patients had elevated FRM, the DIC score was strongly dependent on prolongation of the prothrombin time and platelet counts. The ISTH DIC score is useful to identify patients with coagulation activation, predicting fatality and disease severity. It mainly depends on the prolongation of the prothrombin time and platelet counts.
Resumo:
Indications for oral anticoagulation (OAC) have increased in recent years. OAC requires frequent monitoring of the prothrombin time to keep the intensity within the therapeutic range and to minimise the risk for complications. Patient self-management (PSM) has been found to improve the quality of OAC. The present study aimed to investigate the first 330 patients performing PSM in Switzerland. A questionnaire was sent to all patients who followed a teaching program for PSM of OAC between 1998 and 2003. Moreover, family physicians were contacted and/or discharge letters were obtained from the hospitals or the treating physicians. During the study period 13 patients died. Out of the 300 patients providing information 254 (85%) still perform PSM. At least one INR determination per two weeks was done by 74% of the patients and 25% performed at least one INR measurement every 15-30 days. The median time spent within the individual INR target range was 72%. No thromboembolic complications occurred, however, among the 13 patients who died, 1 had myocardial infarction and 6 died of heart failure. When counting these events as arterial thromboembolic complications the frequency was 0.6 (95% CI: 0.3-1.3) per 100 patient-years. The frequency of major bleeding was 0.6 (95% CI: 0.2-1.3) per 100 patient-years. We conclude from this study investigating a real-world patient collective that PSM is suitable and safe for the patients identified by their family physicians and successfully trained by our training centre.
Resumo:
OBJECTIVE: Numerous studies have reported the technical aspects and results of surgical and/or endovascular treatment of cranial dural arteriovenous fistulae (cDAVF) and spinal dural arteriovenous fistulae (sDAVF). Only a few of them have addressed the question of thrombophilic conditions, which may be relevant as pathogenetic factors or can increase the risk for venous thromboembolic events. Therefore, the objective of this study is to compare thrombophilic risk factors in patients with cDAVF and sDAVF with no history of trauma. METHODS: A total of 43 patients (25 with cDAVF and 18 with sDAVF) were included in this study. Blood samples were analyzed for G20210A mutation of the prothrombin gene and factor V Leiden mutation. In all patients, prothrombin time, international normalized ratio, fibrinogen, antithrombin, protein C and S activity, von Willebrand factor antigen, ristocetin cofactor activity, D-dimer, coagulation factor VIII activity, and tissue factor pathway inhibitor were determined. Screening was performed for the occurrence of lupus antiphospholipid and cardiolipin antibodies. RESULTS: The prevalence of G20210A mutation of the prothrombin gene was significantly higher in patients with cDAVF (n = 6) compared with patients with sDAVF (n = 0; P < 0.05, Fisher's exact test). A factor V Leiden mutation was found in 3 patients with sDAVF and in 1 patient with cDAVF (P = 0.29, Fisher's exact test). No significant difference was found for other parameters, except for fibrinogen, but decreased protein C activity was more frequent in patients with cDAVF compared with patients with sDAVF (4 versus 1). Decreased protein S activity was encountered in 3 patients (2 with sDAVF and 1 with cDAVF). Cardiolipin antibodies were found in 2 patients with cDAVF but in none with sDAVF, whereas only 1 patient with sDAVF had lupus antiphospholipid antibodies. CONCLUSION: In both groups of patients with dural arteriovenous fistulae, genetic thrombophilic abnormalities occurred in a higher percentage than in the general population. The differences of the genetic abnormalities may be involved in different pathophysiological mechanism(s) in the development of these distinct neurovascular entities.
Resumo:
Blood coagulation activation might be one mechanism linking acute mental stress with coronary events. We investigated the natural habituation of coagulation responses and recovery to short-term mental stress. Three times with one-week intervals, 24 men (mean age 47 +/- 7 years) underwent the same 13-min stressor (preparation, job interview, mental arithmetic). During each visit venous blood was obtained four times (baseline, immediately post-stress, 45 min of recovery, 105 min of recovery). Eight blood coagulation parameters were measured at weeks one and three. Acute stress provoked increases in von Willebrand factor antigen, fibrinogen, clotting factor FVII activity (FVII:C), FVIII:C, FXII:C (p's < or = 0.019), and D-dimer (N.S.). All coagulation parameters experienced full recovery except FVIII:C (p = 0.022). Stress did not significantly affect activated partial thromboplastin time and prothrombin time. At all time points FVIII:C and FXII:C levels were significantly higher at week one compared to week three (p's < or = 0.041). Before catheter insertion, systolic blood pressure (p = 0.001) and heart rate (p = 0.026) were relatively higher at week one. Unlike the magnitude of systolic blood pressure response to stress (p = 0.007) and of cortisol recovery from stress (p = 0.002), the magnitude of all coagulation responses to stress and the recovery from stress were similar in week one and week three. Sympathetic activation with anticipatory stress best explained increased baseline activity in FVIII and FXII at week one. An incapacity of the coagulation system to adapt to stress repeats is perhaps a consequence of evolution, but might also contribute to increased coronary risk in some individuals, particularly in those with cardiovascular diseases.
Resumo:
INTRODUCTION: Acute psychosocial stress accelerates blood coagulation and elicits hemoconcentration which mechanisms are implicated in acute coronary thrombotic events. We investigated the extent to which the change in prothrombotic measures with acute stress reflects hemoconcentration and genuine activation of coagulation. MATERIAL AND METHODS: Twenty-one middle-aged healthy men underwent three sessions of a combined speech and mental arithmetic task with one-week intervals. Coagulation and plasma volume were assessed at baseline, immediately post-stress, and 45 min post-stress at sessions one and three. Measures of both visits were aggregated to enhance robustness of individual biological stress responses. Changes in eight coagulation measures with and without adjustment for simultaneous plasma volume shift were compared. RESULTS: From baseline to immediately post-stress, unadjusted levels of fibrinogen (p=0.028), clotting factor VII activity (FVII:C) (p=0.001), FVIII:C (p<0.001), FXII:C (p<0.001), and von Willebrand factor (VWF) (p=0.008) all increased. Taking into account hemoconcentration, fibrinogen (p=0.020) and FVII:C levels (p=0.001) decreased, activated partial prothrombin time (APPT) shortened (p<0.001) and prothrombin time (PT) was prolonged (p<0.001). Between baseline and 45 min post-stress, unadjusted (p=0.050) and adjusted (p=0.001) FVIII:C levels increased, adjusted APTT was prolonged (p=0.017), and adjusted PT was shortened (p=0.033). D-dimer levels did not significantly change over time. CONCLUSIONS: Adjustment for stress-hemoconcentration altered the course of unadjusted levels of several prothrombotic factors. After adjustment for hemoconcentration, APPT was shortened immediately post-stress, whereas 45 min post-stress, FVIII:C was increased and PT was shortened. Procoagulant changes to acute stress may reflect both hemoconcentration and genuine activation of coagulation molecules and pathways.
Resumo:
BACKGROUND While the assessment of analytical precision within medical laboratories has received much attention in scientific enquiry, the degree of as well as the sources causing variation between them remains incompletely understood. In this study, we quantified the variance components when performing coagulation tests with identical analytical platforms in different laboratories and computed intraclass correlations coefficients (ICC) for each coagulation test. METHODS Data from eight laboratories measuring fibrinogen twice in twenty healthy subjects with one out of 3 different platforms and single measurements of prothrombin time (PT), and coagulation factors II, V, VII, VIII, IX, X, XI and XIII were analysed. By platform, the variance components of (i) the subjects, (ii) the laboratory and the technician and (iii) the total variance were obtained for fibrinogen as well as (i) and (iii) for the remaining factors using ANOVA. RESULTS The variability for fibrinogen measurements within a laboratory ranged from 0.02 to 0.04, the variability between laboratories ranged from 0.006 to 0.097. The ICC for fibrinogen ranged from 0.37 to 0.66 and from 0.19 to 0.80 for PT between the platforms. For the remaining factors the ICC's ranged from 0.04 (FII) to 0.93 (FVIII). CONCLUSIONS Variance components that could be attributed to technicians or laboratory procedures were substantial, led to disappointingly low intraclass correlation coefficients for several factors and were pronounced for some of the platforms. Our findings call for sustained efforts to raise the level of standardization of structures and procedures involved in the quantification of coagulation factors.
Resumo:
The new oral anticoagulants (NOACs) represent alternative antithrombotic agents for prophylaxis and therapy of thromboembolic diseases. They act either by inhibition of the clotting factor Xa or IIa (thrombin). As a consequence, they influence several coagulation assays (for example prothrombin time, activated partial thromboplastin time). Because of the short half-life of these new agents, these changes show great variations in the course of 24 hours. Furthermore, there are significant differences of laboratory results depending on the used reagents. We explain the influence of apixaban, rivaroxaban (factor Xa inhibitors) and dabigatran (thrombin inhibitor) on the most commonly used coagulation assays. Besides we show that this influence depends on the way of action of the drug as well as on the principle of the coagulation assay. Being aware of this relationships helps to interpret the results of coagulation assays under influence of NOACs correctly.
Resumo:
Chemerin is a well-established modulator of immune cell function and its serum levels are induced in inflammatory diseases. Liver cirrhosis is associated with inflammation which is aggravated by portal hypertension. The objective of this study was to evaluate whether chemerin is induced in patients with more severe liver cirrhosis and portal hypertension. Chemerin has been measured by ELISA in the portal venous serum (PVS), systemic venous serum (SVS) and hepatic venous serum (HVS) of 45 patients with liver cirrhosis. Chemerin is higher in HVS compared to PVS in accordance with our recently published finding. SVS, HVS and PVS chemerin decline in patients with more advanced liver injury defined by the CHILD-PUGH score. Hepatic chemerin has been determined in a small cohort and is similarly expressed in normal and cirrhotic liver. MELD score and serum markers of liver and kidney function do not correlate with chemerin. There is a positive correlation of chemerin in all compartments with Quick prothrombin time and of SVS chemerin with systolic blood pressure. PVS chemerin is induced in patients with modest/massive ascites but this does not translate into higher HVS and SVS levels. Chemerin is not associated with variceal size. Reduction of portal pressure by transjugular intrahepatic portosystemic shunt does not affect chemerin levels. These data show that low chemerin in patients with more severe liver cirrhosis is associated with reduced Quick prothrombin time.