18 resultados para Protein design
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (~30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.
Resumo:
A number of mathematical models for predicting growth and final height outcome have been proposed to enable the clinician to 'individualize' growth-promoting treatment. However, despite optimizing these models, many patients with isolated growth hormone deficiency (IGHD) do not reach their target height. The aim of this study was to analyse the impact of polymorphic genotypes [CA repeat promoter polymorphism of insulin-like growth factor-I (IGF-I) and the -202 A/C promoter polymorphism of IGF-Binding Protein-3 (IGFBP-3)] on variable growth factors as well as final height in severe IGHD following GH treatment. DESIGN, PATIENTS AND CONTROLS: One hundred seventy eight (IGF-I) and 167 (IGFBP-3) subjects with severe growth retardation because of IGHD were studied. In addition, the various genotypes were also studied in a healthy control group of 211 subjects.
Resumo:
Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalization.
Resumo:
BACKGROUND The variant Creutzfeldt-Jakob disease incidence peaked a decade ago and has since declined. Based on epidemiologic evidence, the causative agent, pathogenic prion, has not constituted a tangible contamination threat to large-scale manufacturing of human plasma-derived proteins. Nonetheless, manufacturers have studied the prion removal capabilities of various manufacturing steps to better understand product safety. Collectively analyzing the results could reveal experimental reproducibility and detect trends and mechanisms driving prion removal. STUDY DESIGN AND METHODS Plasma Protein Therapeutics Association member companies collected more than 200 prion removal studies on plasma protein manufacturing steps, including precipitation, adsorption, chromatography, and filtration, as well as combined steps. The studies used a range of model spiking agents and bench-scale process replicas. The results were grouped based on key manufacturing variables to identify factors impacting removal. The log reduction values of a group are presented for comparison. RESULTS Overall prion removal capacities evaluated by independent groups were in good agreement. The removal capacity evaluated using biochemical assays was consistent with prion infectivity removal measured by animal bioassays. Similar reduction values were observed for a given step using various spiking agents, except highly purified prion protein in some circumstances. Comparison between combined and single-step studies revealed complementary or overlapping removal mechanisms. Steps with high removal capacities represent the conditions where the physiochemical differences between prions and therapeutic proteins are most significant. CONCLUSION The results support the intrinsic ability of certain plasma protein manufacturing steps to remove prions in case of an unlikely contamination, providing a safeguard to products.
Resumo:
OBJECTIVE: Only a few studies have investigated variations of different markers for inflammatory processes during the physiological menstrual cycle. The results are conflicting, particularly concerning the correlation between the marker leptin and steroid hormones. The aim of the study was to investigate the inflammatory markers C-reactive protein (CRP) and leptin in the serum of healthy, normally ovulating women and to correlate these with each other and with the hormones of the gonadal axis. A cycle-dependence of the markers studied would imply an exact timing of the blood sampling for clinical needs. DESIGN: Observational study investigating the two inflammatory markers CRP and leptin in relation to the hormonal pattern of the gonadal axis during the normal cycle. METHODS: Ovulatory cycles of 36 healthy, young, normo-androgenic women, having a normal body mass index were evaluated. Serum concentrations of leptin and CRP, as well as of follicle-stimulating hormone, luteinising hormone, 17beta-oestradiol, progesterone, prolactin (PRL) and free testosterone were measured every 1-2 days during one full cycle. RESULTS: Serum levels of leptin and CRP behaved differently during ovulatory cycles, with higher concentrations for leptin only during certain phases. Significant correlations were found in the follicular phase between leptin and PRL and leptin and free testosterone. CONCLUSIONS: Leptin levels change during the menstrual cycle. Leptin levels are more stable on cycle days 1-5 than later in the cycle. For precise cycle-independent measurements, these fluctuations have to be taken into account. There is no similar cyclic pattern for CRP.
Resumo:
OBJECTIVES:: This study was designed to apply the rapid Elecsys(R) S100 immunoassay for real-time measurement of S100 protein serum levels indicating acute brain damage in patients undergoing carotid artery stenting (CAS) or endarterectomy (CEA). DESIGN AND METHODS:: Data of 14 CAS patients were compared to those of 43 CEA and 14 control patients undergoing coronary angiography (CA). S100 serum levels were measured by the full-automatic Elecsys(R) S100 immunoassay and compared to those obtained by the well-established LIA-mat(R) S100 system. RESULTS:: In contrast to CAS and CA patients, median S100 serum levels of CEA patients significantly increased to 0.24 ng/mL before declamping, but subsequently returned to baseline. Three CEA patients with neurological deficits showed sustained elevated S100 levels 6 h after extubation. Absolute S100 values were not significantly different between the two methods. Bland-Altman plot analyses displayed a good agreement, mostly indicating slightly smaller values applying the Elecsys(R) S100 system. CONCLUSIONS:: The Elecsys(R) S100 system appears to be suitable for rapid real-time detection of neurological deficits in patients undergoing CAS and CEA. Persistent elevations of Elecsys(R) S100 levels during CEA were associated with prolonged neurological disorders, whereas transient increases seem to represent impaired blood-brain barrier integrity without neurological deficits.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
Lung cancer is the leading cause of cancer death worldwide. The overall 5-year survival after therapy is about 16% and there is a clear need for better treatment options, such as therapies targeting specific molecular structures. G-protein coupled receptors (GPCRs), as the largest family of cell surface receptors, represent an important group of potential targets for diagnostics and therapy. We therefore used laser capture microdissection and GPCR-focused Affymetrix microarrays to examine the expression of 929 GPCR transcripts in tissue samples of 10 patients with squamous cell carcinoma and 7 with adenocarcinoma in order to identify novel targets in non-small cell lung carcinoma (NSCLC). The relative gene expression levels were calculated in tumour samples compared to samples of the neighbouring alveolar tissue in every patient. Based on this unique study design, we identified 5 significantly overexpressed GPCRs in squamous cell carcinoma, in the following decreasing order of expression: GPR87 > CMKOR1 > FZD10 > LGR4 > P2RY11. All are non-olfactory and GRAFS (glutamate, rhodopsin, adhesion, frizzled/taste2, secretin family) classified. GPR87, LGR4 and CMKOR1 are orphan receptors. GPR87 stands out as a candidate for further target validation due to its marked overexpression and correlation on a mutation-based level to squamous cell carcinoma.
Resumo:
OBJECTIVE: Apoptosis of pancreatic beta-cells is critical in both diabetes development and failure of islet transplantation. The role in these processes of pro- and antiapoptotic Bcl-2 family proteins, which regulate apoptosis by controlling mitochondrial integrity, remains poorly understood. We investigated the role of the BH3-only protein Bid and the multi-BH domain proapoptotic Bax and Bak, as well as prosurvival Bcl-2, in beta-cell apoptosis. RESEARCH DESIGN AND METHODS: We isolated islets from mice lacking Bid, Bax, or Bak and those overexpressing Bcl-2 and exposed them to Fas ligand, tumor necrosis factor (TNF)-alpha, and proinflammatory cytokines or cytotoxic stimuli that activate the mitochondrial apoptotic pathway (staurosporine, etoposide, gamma-radiation, tunicamycin, and thapsigargin). Nuclear fragmentation was measured by flow cytometry. RESULTS: Development and function of islets were not affected by loss of Bid, and Bid-deficient islets were as susceptible as wild-type islets to cytotoxic stimuli that cause apoptosis via the mitochondrial pathway. In contrast, Bid-deficient islets and those overexpressing antiapoptotic Bcl-2 were protected from Fas ligand-induced apoptosis. Bid-deficient islets were also resistant to apoptosis induced by TNF-alpha plus cycloheximide and were partially resistant to proinflammatory cytokine-induced death. Loss of the multi-BH domain proapoptotic Bax or Bak protected islets partially from death receptor-induced apoptosis. CONCLUSIONS: These results demonstrate that Bid is essential for death receptor-induced apoptosis of islets, similar to its demonstrated role in hepatocytes. This indicates that blocking Bid activity may be useful for protection of islets from immune-mediated attack and possibly also in other pathological states in which beta-cells are destroyed.
Resumo:
OBJECTIVE: Insulin-like growth factor-I (IGF-I) is critically involved in the control of cartilage matrix metabolism. It is well known that IGF-binding protein-3 (IGFBP-3) is increased during osteoarthritis (OA), but its function(s) is not known. In other cells, IGFBP-3 can regulate IGF-I action in the extracellular environment and can also act independently inside the cell; this includes transcriptional gene control in the nucleus. These studies were undertaken to localize IGFBP-3 in human articular cartilage, particularly within cells. DESIGN: Cartilage was dissected from human femoral heads derived from arthroplasty for OA, and OA grade assessed by histology. Tissue slices were further characterized by extraction and assay of IGFBPs by IGF ligand blot (LB) and by enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry (IHC) for IGF-I and IGFBP-3 was performed on cartilage from donors with mild, moderate and severe OA. Indirect fluorescence and immunogold-labeling IHC studies were included. RESULTS: LBs of chondrocyte lysates showed a strong signal for IGFBP-3. IHC of femoral cartilage sections at all OA stages showed IGF-I and IGFBP-3 matrix stain particularly in the top zones, and closely associated with most cells. A prominent perinuclear/nuclear IGFBP-3 signal was seen. Controls using non-immune sera or antigen-blocked antibody showed negative or strongly reduced stain. In frozen sections of human ankle cartilage, immunofluorescent IGFBP-3 stain co-localized with the nuclear 4',6-diamidino-2-phenyl indole (DAPI) stain in greater than 90% of the cells. Immunogold IHC of thin sections and transmission electron immunogold microscopy of ultra-thin sections showed distinct intra-nuclear staining. CONCLUSIONS: IGFBP-3 in human cartilage is located in the matrix and within chondrocytes in the cytoplasm and nuclei. This new finding indicates that the range of IGFBP-3 actions in articular cartilage is likely to include IGF-independent roles and opens the door to studies of its nuclear actions, including the possible regulation of hormone receptors or transcriptional complexes to control gene action.
Resumo:
PURPOSE: The unfolded protein response is triggered by the accumulation of misfolded proteins within the endoplasmic reticulum. Previous studies suggest that the unfolded protein response is activated in some cancer cell lines and involved in tumor development. The role of the unfolded protein response during leukemogenesis is unknown thus far. EXPERIMENTAL DESIGN: Here, we assessed the induction of key effectors of the unfolded protein response in leukemic cells at diagnosis of 105 acute myeloid leukemia (AML) patients comprising all subtypes. We determined the formation of the spliced variant of the X-box-binding protein 1 (XBP1) mRNA, as well as expression levels of calreticulin, GRP78, and CHOP mRNA. RESULTS: The formation of the spliced variant of XBP1s was detectable in 16.2% (17 of 105) of AML patients. Consistent with activated unfolded protein response, this group also had significantly increased expression of calreticulin, GRP78, and CHOP. AML patients with activated unfolded protein response had lower WBC counts, lactate dehydrogenase levels, and more frequently, secondary AML. The incidence of fms-related tyrosine kinase 3 (FLT3) mutations was significantly lower in patients with activated unfolded protein response. In addition, an association was observed between activated unfolded protein response and deletion of chromosome 7. Finally, the clinical course of AML patients with activated unfolded protein response was more favorable with lower relapse rate (P = 0.0182) and better overall (P = 0.041) and disease-free survival (P = 0.022). CONCLUSIONS: These results suggest that the unfolded protein response is activated in a considerable subset of AML patients. AML patients with activated unfolded protein response present specific clinical characteristics and a more favorable course of the disease.
Resumo:
BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.
Resumo:
INTRODUCTION Proteinuria (PTU) is an important marker for the development and progression of renal disease, cardiovascular disease and death, but there is limited information about the prevalence and factors associated with confirmed PTU in predominantly white European HIV+ persons, especially in those with an estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73 m(2). PATIENTS AND METHODS Baseline was defined as the first of two consecutive dipstick urine protein (DPU) measurements during prospective follow-up >1/6/2011 (when systematic data collection began). PTU was defined as two consecutive DUP >1+ (>30 mg/dL) >3 months apart; persons with eGFR <60 at either DPU measurement were excluded. Logistic regression investigated factors associated with PTU. RESULTS A total of 1,640 persons were included, participants were mainly white (n=1,517, 92.5%), male (n=1296, 79.0%) and men having sex with men (n=809; 49.3%). Median age at baseline was 45 (IQR 37-52 years), and CD4 was 570 (IQR 406-760/mm(3)). The median baseline date was 2/12 (IQR 11/11-6/12), and median eGFR was 99 (IQR 88-109 mL/min/1.73 m(2)). Sixty-nine persons had PTU (4.2%, 95% CI 3.2-4.7%). Persons with diabetes had increased odds of PTU, as were those with a prior non-AIDS (1) or AIDS event and those with prior exposure to indinavir. Among females, those with a normal eGFR (>90) and those with prior abacavir use had lower odds of PTU (Figure 1). CONCLUSIONS One in 25 persons with eGFR>60 had confirmed proteinuria at baseline. Factors associated with PTU were similar to those associated with CKD. The lack of association with antiretrovirals, particularly tenofovir, may be due to the cross-sectional design of this study, and additional follow-up is required to address progression to PTU in those without PTU at baseline. It may also suggest other markers are needed to capture the deteriorating renal function associated with antiretrovirals may be needed at higher eGFRs. Our findings suggest PTU is an early marker for impaired renal function.
Resumo:
PURPOSE To evaluate the safety, tolerability and bioactivity of ascending doses of MP0112, a designed ankyrin repeat protein (DARPin) that binds with high affinity to vascular endothelial growth factor-A (VEGF-A), in treatment-naive patients with exudative age-related macular degeneration (AMD). DESIGN Phase I/II, open-label, multicenter, dose-escalation study. METHODS Patients were to receive a single intravitreal injection of MP0112 at doses ranging from 0.04 to 3.6 mg and be monitored for 16 weeks for safety, efficacy, pharmacokinetics, and dose response. RESULTS Altogether, 32 patients received a single injection of MP0112. The maximum tolerated dose was 1.0 mg because of a case of endophthalmitis in the 2.0 mg cohort. Drug-related adverse events were reported by 13 (41%) of 32 patients; they included ocular inflammation in 11 patients (7 mild, 4 moderate in severity). Visual acuity scores were stable or improved compared with baseline for ≥4 weeks following injection; both retinal thickness and fluorescein angiography leakage decreased in a dose-dependent manner. Rescue therapy was administered to 20 (91%) of 22 patients who received 0.04-0.4 mg MP0112 compared with 4 of 10 (40%) patients who received 1.0 or 2.0 mg. Of patients in the higher-dose cohorts who did not require rescue treatment, 83% (5/6) maintained reductions in central retinal thickness through week 16. CONCLUSIONS A single injection of 1.0 or 2.0 mg MP0112 resulted in mean decreases in retinal thickness and leakage area despite ocular inflammation. Larger-scale studies are warranted to confirm these observations.