31 resultados para Protein concentration
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.
Resumo:
The aim of this study was to quantify the buffer attributes (value, power, range and optimum) of two model systems for whole human resting saliva, the purified proteins from whole human resting saliva and single proteins. Two model systems, the first containing amyloglucosidase and lysozyme, and the second containing amyloglucosidase and alpha-amylase, were shown to provide, in combination with hydrogencarbonate and di-hydrogenphosphate, almost identical buffer attributes as whole human resting saliva. It was further demonstrated that changes in the protein concentration as small as 0.1% may change the buffer value of a buffer solution up to 15 times. Additionally, it was shown that there was a protein concentration change in the same range (0.16%) between saliva samples collected at the time periods of 13:00 and others collected at 9:00 am and 17:00. The mode of the protein expression changed between these samples corresponded to the change in basic buffer power and the change of the buffer value at pH 6.7. Finally, SDS Page and Ruthenium II tris (bathophenantroline disulfonate) staining unveiled a constant protein expression in all samples except for one 50 kDa protein band. As the change in the expression pattern of that 50 kDa protein band corresponded to the change in basic buffer power and the buffer value at pH 6.7, it was reasonable to conclude that this 50 kDa protein band may contain the protein(s) belonging to the protein buffer system of human saliva.
Resumo:
A dietary energy restriction to 49% of total energy requirements was conducted with Red Holstein cows for three weeks in mid-lactation. At the last day of the restriction phase, primary bovine mammary epithelial cells (pbMEC) of eight restriction (RF) and seven control-fed (CF) cows were extracted out of one litre of milk and cultured. In their third passage, an immune challenge with the most prevalent, heat-inactivated mastitis pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was conducted. Lactoferrin (LF) was determined on gene expression and protein level. An enzyme-linked immunosorbent assay (ELISA) was developed to determine LF in milk samples taken twice weekly throughout the animal trial, beginning on day 20 pp (post-partum) until day 150 pp, in cell culture total protein and in cell culture supernatant. Milk LF increased throughout the lactation and decreased significantly during the induced energy deficiency in the RF group. At the beginning of realimentation, LF concentration increased immediately in the RF group and reached higher levels than before the induced deficit following the upward trend seen in the CF group. Cell culture data revealed higher levels (up to sevenfold up-regulation in gene expression) and significant higher LF protein concentration in the RF compared to the CF group cells. A further emphasized effect was found in E. coli compared to S. aureus exposed cells. The general elevated LF levels in the RF pbMEC group and the further increase owing to the immune challenge indicate an unexpected memory ability of milk-extracted mammary cells that were transposed into in vitro conditions and even displayed in the third passage of cultivation. The study confirms the suitability of the non-invasive milk-extracted pbMEC culture model to monitor the influence of feeding experiments on immunological situations in vivo.
Resumo:
OBJECTIVE: To evaluate serum concentrations of biochemical markers and survival time in dogs with protein-losing enteropathy (PLE). DESIGN: Prospective study. ANIMALS: 29 dogs with PLE and 18 dogs with food-responsive diarrhea (FRD). PROCEDURES: Data regarding serum concentrations of various biochemical markers at the initial evaluation were available for 18 of the 29 dogs with PLE and compared with findings for dogs with FRD. Correlations between biochemical marker concentrations and survival time (interval between time of initial evaluation and death or euthanasia) for dogs with PLE were evaluated. RESULTS: Serum C-reactive protein concentration was high in 13 of 18 dogs with PLE and in 2 of 18 dogs with FRD. Serum concentration of canine pancreatic lipase immunoreactivity was high in 3 dogs with PLE but within the reference interval in all dogs with FRD. Serum α1-proteinase inhibitor concentration was less than the lower reference limit in 9 dogs with PLE and 1 dog with FRD. Compared with findings in dogs with FRD, values of those 3 variables in dogs with PLE were significantly different. Serum calprotectin (measured by radioimmunoassay and ELISA) and S100A12 concentrations were high but did not differ significantly between groups. Seventeen of the 29 dogs with PLE were euthanized owing to this disease; median survival time was 67 days (range, 2 to 2,551 days). CONCLUSIONS AND CLINICAL RELEVANCE: Serum C-reactive protein, canine pancreatic lipase immunoreactivity, and α1-proteinase inhibitor concentrations differed significantly between dogs with PLE and FRD. Most initial biomarker concentrations were not predictive of survival time in dogs with PLE.
Resumo:
An implantable transducer for monitoring the flow of Cerebrospinal fluid (CSF) for the treatment of hydrocephalus has been developed which is based on measuring the heat dissipation of a local thermal source. The transducer uses passive telemetry at 13.56 MHz for power supply and read out of the measured flow rate. The in vitro performance of the transducer has been characterized using artificial Cerebrospinal Fluid (CSF) with increased protein concentration and artificial CSF with 10\% fresh blood. After fresh blood was added to the artificial CSF a reduction of flow rate has been observed in case that the sensitive surface of the flow sensor is close to the sedimented erythrocytes. An increase of flow rate has been observed in case that the sensitive surface is in contact with the remaining plasma/artificial CSF mix above the sediment which can be explained by an asymmetric flow profile caused by the sedimentation of erythrocythes having increased viscosity compared to artificial CSF. After removal of blood from artificial CSF, no drift could be observed in the transducer measurement which could be associated to a deposition of proteins at the sensitive surface walls of the packaged flow transducer. The flow sensor specification requirement of +-10\% for a flow range between 2 ml/h and 40 ml/h. could be confirmed at test conditions of 37 degrees C.
Resumo:
OBJECTIVE: To determine fluid retention, glomerular filtration rate, and urine output in dogs anesthetized for a surgical orthopedic procedure. ANIMALS: 23 dogs treated with a tibial plateau leveling osteotomy. PROCEDURES: 12 dogs were used as a control group. Cardiac output was measured in 5 dogs, and 6 dogs received carprofen for at least 14 days. Dogs received oxymorphone, atropine, propofol, and isoflurane for anesthesia (duration, 4 hours). Urine and blood samples were obtained for analysis every 30 minutes. Lactated Ringer's solution was administered at 10 mL/kg/h. Urine output was measured and glomerular filtration rate was estimated. Fluid retention was measured by use of body weight, fluid balance, and bioimpedance spectroscopy. RESULTS: No difference was found among control, cardiac output, or carprofen groups, so data were combined. Median urine output and glomerular filtration rate were 0.46 mL/kg/h and 1.84 mL/kg/min. Dogs retained a large amount of fluids during anesthesia, as indicated by increased body weight, positive fluid balance, increased total body water volume, and increased extracellular fluid volume. The PCV, total protein concentration, and esophageal temperature decreased in a linear manner. CONCLUSIONS AND CLINICAL RELEVANCE: Dogs anesthetized for a tibial plateau leveling osteotomy retained a large amount of fluids, had low urinary output, and had decreased PCV, total protein concentration, and esophageal temperature. Evaluation of urine output alone in anesthetized dogs may not be an adequate indicator of fluid balance.
Resumo:
The capability of goats to maintain milk production during water deprivation is remarkable and not yet fully understood. The aim of the present study was to investigate whether intravenous infusions of hypertonic NaCl cause release of both vasopressin and oxytocin and whether the peptides, in combination with the hyperosmolality, affect milk flow and milk composition. Six Swedish domestic landrace goats in their first to third lactation were milked every 30 min during experiments. Hypertonic NaCl (HNaCl) or isotonic NaCl (IsoNaCl) were infused for 90 min. Goats were not allowed to drink during infusions. Plasma vasopressin concentration increased during HNaCl infusions, and did not change in response to IsoNaCl infusions. Plasma oxytocin concentration did not change during either infusion. Milk flow was maintained during the infusions. Milk fat concentration decreased in the three samples taken before onset of the infusions, but then increased gradually during HNaCl infusions, while it continued to fall during the IsoNaCl infusions. Milk osmolality followed the rise in plasma osmolality during the HNaCl infusions and did not change in IsoNaCl experiments. Milk lactose concentration increased throughout both series of experiments, the concentration being higher during HNaCl infusions. Milk protein concentration did not change during HNaCl infusions, but fell in the IsoNaCl experiments. It is concluded that the hyperosmolality in combination with elevated plasma vasopressin levels did not disturb the secretory activity of the mammary cells, but rather facilitated emptying of the alveolar milk. Such a mechanism may help to explain the sustained milk production in water deprived goats.
Resumo:
INTRODUCTION: The simple bedside method for sampling undiluted distal pulmonary edema fluid through a normal suction catheter (s-Cath) has been experimentally and clinically validated. However, there are no data comparing non-bronchoscopic bronchoalveolar lavage (mini-BAL) and s-Cath for assessing lung inflammation in acute hypoxaemic respiratory failure. We designed a prospective study in two groups of patients, those with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and those with acute cardiogenic lung edema (ACLE), designed to investigate the clinical feasibility of these techniques and to evaluate inflammation in both groups using undiluted sampling obtained by s-Cath. To test the interchangeability of the two methods in the same patient for studying the inflammation response, we further compared mini-BAL and s-Cath for agreement of protein concentration and percentage of polymorphonuclear cells (PMNs). METHODS: Mini-BAL and s-Cath sampling was assessed in 30 mechanically ventilated patients, 21 with ALI/ARDS and 9 with ACLE. To analyse agreement between the two sampling techniques, we considered only simultaneously collected mini-BAL and s-Cath paired samples. The protein concentration and polymorphonuclear cell (PMN) count comparisons were performed using undiluted sampling. Bland-Altman plots were used for assessing the mean bias and the limits of agreement between the two sampling techniques; comparison between groups was performed by using the non-parametric Mann-Whitney-U test; continuous variables were compared by using the Student t-test, Wilcoxon signed rank test, analysis of variance or Student-Newman-Keuls test; and categorical variables were compared by using chi-square analysis or Fisher exact test. RESULTS: Using protein content and PMN percentage as parameters, we identified substantial variations between the two sampling techniques. When the protein concentration in the lung was high, the s-Cath was a more sensitive method; by contrast, as inflammation increased, both methods provided similar estimates of neutrophil percentages in the lung. The patients with ACLE showed an increased PMN count, suggesting that hydrostatic lung edema can be associated with a concomitant inflammatory process. CONCLUSIONS: There are significant differences between the s-Cath and mini-BAL sampling techniques, indicating that these procedures cannot be used interchangeably for studying the lung inflammatory response in patients with acute hypoxaemic lung injury.
Resumo:
A comatose 30-month-old, entire male boxer was presented because of an acute history of a cluster of three to four seizures. Neurological examination suggested a diffuse to multifocal intracranial lesion. Magnetic resonance tomography revealed symmetrical multifocal to diffuse changes of the cerebral grey matter and ependymal lining with sediment in the lateral ventricles. Haematological examination revealed leucocytosis with neutrophilia. Cerebrospinal fluid examination revealed high protein concentration and polymorphonuclear pleocytosis. Despite antiepileptic treatment, therapy against increased intracranial pressure and antibiosis, the dog's condition continued to deteriorate and he was euthanased. Pathological examination revealed fibrinosuppurative meningo-ependymitis and necrotising arteritis throughout the brain. In addition, chronic inflammation and arterial stenosis was found in the spinal meninges. No infectious agent was found. A diagnosis of steroid-responsive meningitis arteritis was made. The massive extension into the meninges and ventricular system of the forebrain has not been described previously in dogs with steroid-responsive meningitis arteritis and should be considered in the differential diagnosis when an intracranial suppurative infection is suspected.
Resumo:
OBJECTIVE The aim of this exploratory pilot study was to determine if there are differences in vaginal cytokine levels between postmenopausal women with and without vulvovaginal irritative symptoms (itching, burning, or pain). METHODS Postmenopausal women (n = 34) not using hormone therapy and presenting with or without symptoms of vulvovaginal irritation were asked to volunteer for this study. Each participant underwent a vaginal examination and screening for vaginitis using Amsel criteria, pH, and light microscopy. A vaginal lavage with 5.0 mL of sterile saline was carried out, and a peripheral blood sample was obtained. The vaginal lavage and serum samples were assayed for interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor-α by specific enzyme-linked immunosorbent assays. Results were adjusted for total protein concentration and presented as the amount of cytokines per protein (pg/μg protein). Statistical analysis was performed using SAS version 9.3 (SAS Institute, Cary, NC). The means and SDs of all variables among women with and without vulvovaginal irritation were compared using independent-samples Student's t test. RESULTS A total of 26 postmenopausal women were enrolled into the study (symptomatic, n = 15; asymptomatic, n = 11). The mean (SD) vaginal pH for all participants was 5.9 (1.2). There were no significant differences (P > 0.05) in age, age at menopause, vaginal pH, and vaginal and serum cytokines and chemokines (IL-1β, IL-6, IL-8, and tumor necrosis factor-α) among symptomatic versus asymptomatic women. IL-8 was the most abundant vaginal cytokine, with mean (SD) vaginal IL-8 levels being 4.1 (3.4) and 3.1 (3.9) pg/μg protein in the symptomatic versus asymptomatic groups, respectively (P = 0.55). There were no significant linear correlations (P > 0.05) between serum and vaginal cytokine levels for all endpoints. CONCLUSIONS The presence or absence of postmenopausal vulvovaginal symptoms does not significantly differentiate vaginal inflammatory markers. Serum and vaginal cytokines are not significantly linearly correlated among postmenopausal women with and without symptoms commonly associated with vaginal atrophy, implying that this is a local reaction.
Resumo:
Pentatricopeptide repeat domain protein 1 (PTCD1) is a novel human protein that was recently shown to decrease the levels of mitochondrial leucine tRNAs. The physiological role of this regulation, however, remains unclear. Here we show that amino acid starvation by leucine deprivation significantly increased the mRNA steady-state levels of PTCD1 in human hepatocarcinoma (HepG2) cells. Amino acid starvation also increased the mitochondrially encoded leucine tRNA (tRNA(Leu(CUN))) and the mRNA for the mitochondrial leucyl-tRNA synthetase (LARS2). Despite increased PTCD1 mRNA steady-state levels, amino acid starvation decreased PTCD1 on the protein level. Decreasing PTCD1 protein concentration increases the stability of the mitochondrial leucine tRNAs, tRNA(Leu(CUN)) and tRNA(Leu(UUR)) as could be shown by RNAi experiments against PTCD1. Therefore, it is likely that decreased PTCD1 protein contributes to the increased tRNA(Leu(CUN)) levels in amino acid-starved cells. The stabilisation of the mitochondrial leucine tRNAs and the upregulation of the mitochondrial leucyl-tRNA synthetase LARS2 might play a role in adaptation of mitochondria to amino acid starvation.
Resumo:
OBJECTIVES Exploratory pilot study to determine the correlation between postmenopausal vulvovaginal symptoms and vaginal cytokine levels. METHODS Postmenopausal women (n = 34) not using menopausal hormone therapy and presenting with or without symptoms of vulvovaginal irritation were screened. Each participant underwent a vaginal examination and screening for vaginitis. A cervicovaginal lavage (CVL) with sterile saline and a peripheral blood sample were obtained. Main outcome measures were assessed by Luminex® X-map method on the Bio-Plex® platform. Main outcome measures were cervicovaginal and serum interleukin (IL)-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES level. Cervicovaginal cytokines were adjusted to total protein concentration [pg/mcg protein]. RESULTS Twenty-six postmenopausal women were enrolled (symptomatic: n = 15; asymptomatic: n = 11). There were no significant differences between groups: age, age at menopause, vaginal pH and all CVL and serum cytokines (IL-4, IL-5, IL-10, IL-12, IL-13, TNF-α, GM-CSF, MIP-1-alpha and RANTES). GM-CSF was the most abundant vaginal cytokine (symptomatic: 146.5 ± 165.6 pg/mcg protein; asymptomatic: 146.0 ± 173.5 pg/mcg protein; p = 0.99). CONCLUSIONS Postmenopausal vulvovaginal symptoms did not correlate with vaginal inflammatory marker. There was no difference in serum or CVL cytokines between symptomatic and asymptomatic postmenopasual women. Vaginal symptoms after menopause are not related to the vaginal cytokine changes associated with loss of estrogen.
Resumo:
Previously, we described the protective role of the neutrophil serine protease inhibitor serpinB1 in preventing early mortality of Pseudomonas aeruginosa lung infection by fostering bacterial clearance and limiting inflammatory cytokines and proteolytic damage. Surfactant protein D (SP-D), which maintains the antiinflammatory pulmonary environment and mediates bacterial removal, was degraded in infected serpinB1-deficient mice. Based on the hypothesis that increased SP-D would rescue or mitigate the pathological effects of serpinB1 deletion, we generated two serpinB1(-/-) lines overexpressing lung-specific rat SP-D and inoculated the mice with P. aeruginosa. Contrary to predictions, bacterial counts in the lungs of SP-D(low)serpinB1(-/-) and SP-D(high) serpinB1(-/-) mice were 4 logs higher than wild-type and not different from serpinB1(-/-) mice. SP-D overexpression also failed to mitigate inflammation (TNF-α), lung injury (free protein, albumin), or excess neutrophil death (free myeloperoxidase, elastase). These pathological markers were higher for infected SP-D(high)serpinB1(-/-) mice than for serpinB1(-/-) mice, although the differences were not significant after controlling for multiple comparisons. The failure of transgenic SP-D to rescue antibacterial defense of serpinB1-deficient mice occurred despite 5-fold or 20-fold increased expression levels, largely normal structure, and dose-dependent bacteria-aggregating activity. SP-D of infected wild-type mice was intact in 43-kD monomers by reducing SDS-PAGE. By contrast, proteolytic fragments of 35, 17, and 8 kD were found in infected SP-D(low)serpinB1(-/-), SP-D(high) serpinB1(-/-) mice, and serpinB1(-/-) mice. Thus, although therapies to increase lung concentration of SP-D may have beneficial applications, the findings suggest that therapy with SP-D may not be beneficial for lung inflammation or infection if the underlying clinical condition includes excess proteolysis.
Resumo:
BACKGROUND AND OBJECTIVE: Protease inhibitors are highly bound to orosomucoid (ORM) (alpha1-acid glycoprotein), an acute-phase plasma protein encoded by 2 polymorphic genes, which may modulate their disposition. Our objective was to determine the influence of ORM concentration and phenotype on indinavir, lopinavir, and nelfinavir apparent clearance (CL(app)) and cellular accumulation. Efavirenz, mainly bound to albumin, was included as a control drug. METHODS: Plasma and cells samples were collected from 434 human immunodeficiency virus-infected patients. Total plasma and cellular drug concentrations and ORM concentrations and phenotypes were determined. RESULTS: Indinavir CL(app) was strongly influenced by ORM concentration (n = 36) (r2 = 0.47 [P = .00004]), particularly in the presence of ritonavir (r2 = 0.54 [P = .004]). Lopinavir CL(app) was weakly influenced by ORM concentration (n = 81) (r2 = 0.18 [P = .0001]). For both drugs, the ORM1 S variant concentration mainly explained this influence (r2 = 0.55 [P = .00004] and r2 = 0.23 [P = .0002], respectively). Indinavir CL(app) was significantly higher in F1F1 individuals than in F1S and SS patients (41.3, 23.4, and 10.3 L/h [P = .0004] without ritonavir and 21.1, 13.2, and 10.1 L/h [P = .05] with ritonavir, respectively). Lopinavir cellular exposure was not influenced by ORM abundance and phenotype. Finally, ORM concentration or phenotype did not influence nelfinavir (n = 153) or efavirenz (n = 198) pharmacokinetics. CONCLUSION: ORM concentration and phenotype modulate indinavir pharmacokinetics and, to a lesser extent, lopinavir pharmacokinetics but without influencing their cellular exposure. This confounding influence of ORM should be taken into account for appropriate interpretation of therapeutic drug monitoring results. Further studies are needed to investigate whether the measure of unbound drug plasma concentration gives more meaningful information than total drug concentration for indinavir and lopinavir.
Resumo:
The purpose of this study was to compare xenobiotic CYP1A induction in liver, gills, and excretory kidney of gilthead seabream, Sparus aurata. Fishes were exposed via water for 20 days to different concentrations of benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). CYP1A was measured at the enzyme activity level as 7-ethoxyresorufin-O-deethylase (EROD) activity, and at the protein level by means of ELISA. The liver displayed the highest absolute levels of EROD activity, both under non-exposed and exposed conditions. Organ- or inducer-related differences in the time course of CYP1A induction were moderate; however, the magnitude of the induction response varied between the organs and between B(a)P and TCDD. In the case of TCDD, liver, and kidney yielded a comparable induction response, whereas in the case of B(a)P, the kidney showed a substantially higher maximum induction factor than the liver. In the gills, the two xenobiotics resulted in similar maximum induction factors. In B(a)P-exposed seabream, EROD activities and CYP1A protein levels showed a good correlation in all three organs, whereas with TCDD as inducer the correlation was poor, what was mainly due to a decrease of EROD activities at the higher concentrations of TCDD, while CYP1A protein levels showed no concomitant decline. Overall, the study revealed both similarities and differences in the time-, concentration-, and inducer-dependent CYP1A responses of the three target organs, liver, kidney, and gills. Although, the findings of this study principally confirm the notion of the liver as the major metabolic organ in fish, they also provide evidence for substantial metabolic potential in gills and particularly in the kidney.