6 resultados para Propylene epoxidation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Agrocybe aegerita peroxidase/peroxygenase (AaP) is an extracellular fungal biocatalyst that selectively hydroxylates the aromatic ring of naphthalene. Under alkaline conditions, the reaction proceeds via the formation of an intermediary product with a molecular mass of 144 and a characteristic UV absorption spectrum (A(max) 210, 267, and 303 nm). The compound was semistable at pH 9 but spontaneously hydrolyzed under acidic conditions (pH<7) into 1-naphthol as major product and traces of 2-naphthol. Based on these findings and literature data, we propose naphthalene 1,2-oxide as the primary product of AaP-catalyzed oxygenation of naphthalene. Using (18)O-labeled hydrogen peroxide, the origin of the oxygen atom transferred to naphthalene was proved to be the peroxide that acts both as oxidant (primary electron acceptor) and oxygen source.
Resumo:
To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.
Resumo:
Techniques of electrode modification by copper deposits are developed that allow obtaining compact bulk quasi-epitaxial deposits on basal Pt(hkl) single crystal faces. The issues of the deposit roughness and characterization are discussed. Problems of drying and transferring electrodes with copper deposits into other solutions are considered. The obtained deposits are used for CO2 electroreduction in propylene carbonate and acetonitrile solutions of 0.1 M TBAPF6, and the relationship between the electrode surface structure and its electrocatalytic activity in CO2 electroreduction is discussed. We also demonstrate that the restructuring of Cu deposits occurs upon CO2 electroreduction. Complementary reactivity studies are presented for bare Pt(hkl) and Cu(hkl) single crystal electrodes. Cu-modified Pt(hkl) electrodes display the highest activity as compared to bare Pt(hkl) and Cu(hkl). Particularly, the Cu/Pt(110) electrode shows the highest activity among the electrodes under study. Such high activity of Cu/Pt(hkl) electrodes can be explained not only by the increasing actual surface area but also by structural effects, namely by the presence of a large amount of specific defect sites (steps, kinks) on Cu crystallites.
Resumo:
Most cows encounter a state of negative energy balance during the periparturient period, which may lead to metabolic disorders and impaired fertility. The aim of this study was to assess the potential of milk fatty acids as diagnostic tools of detrimental levels of blood plasma nonesterified fatty acids (NEFA), defined as NEFA concentrations beyond 0.6 mmol/L, in a data set of 92 early lactating cows fed a glucogenic or lipogenic diet and subjected to 0-, 30-, or 60-d dry period before parturition. Milk was collected in wk 2, 3, 4, and 8 (n = 368) and blood was sampled weekly from wk 2 to 8 after parturition. Milk was analyzed for milk fatty acids and blood plasma for NEFA. Data were classified as "at risk of detrimental blood plasma NEFA" (NEFA ≥ 0.6 mmol/L) and "not at risk of detrimental blood plasma NEFA" (NEFA <0.6 mmol/L). Concentrations of 45 milk fatty acids and milk fat C18:1 cis-9-to-C15:0 ratio were subjected to a discriminant analysis. Milk fat C18:1 cis-9 revealed the most discriminating variable to identify detrimental blood plasma NEFA. A false positive rate of 10% allowed us to diagnose 46% of the detrimental blood plasma NEFA cases based on a milk fat C18:1 cis-9 concentration of at least 230 g/kg of milk fatty acids. Additionally, it was assessed whether the milk fat C18:1 cis-9 concentrations of wk 2 could be used as an early warning for detrimental blood plasma NEFA risk during the first 8 wk in lactation. Cows with at least 240 g/kg of C18:1 cis-9 in milk fat had about 50% chance to encounter blood plasma NEFA values of 0.6 mmol/L or more during the first 8 wk of lactation, with a false positive rate of 11.4%. Profit simulations were based on costs for cows suffering from detrimental blood plasma NEFA, and costs for preventive treatment based on daily dosing of propylene glycol for 3 wk. Given the relatively low incidence rate (8% of all observations), continuous monitoring of milk fatty acids during the first 8 wk of lactation to diagnose detrimental blood plasma NEFA does not seem cost effective. On the contrary, milk fat C18:1 cis-9 of the second lactation week could be an early warning of cows at risk of detrimental blood NEFA. In this case, selective treatment may be cost effective.
Resumo:
We describe the synthesis of (5 S )-5- C -butylthymidine ( 5a ), of the (5 S )-5- C -butyl- and the (5 S )-5- C -isopentyl derivatives 16a and 16b of 2-deoxy-5-methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin-5-al 1 , the alkyl chain at C(5) is introduced via Wittig chemistry to selectively yield the ( Z )-olefin derivatives 3a and 3b ( Scheme 2 ). The secondary OH function at C(5) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5 S )-configuration in high diastereoisomer purity (de=94%). The corresponding 2-deoxy-5-methylcytidine derivatives are obtained from the protected 5-alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields ( Scheme 3 ). Application of the same strategy to the purine nucleoside 2-deoxyadenine to obtain 5- C -butyl-2-deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride-based reducing agents ( Scheme 4 ).