56 resultados para Propagation waves
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO3 waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.
Resumo:
The aim of this study was to determine if extracorporeal shock wave therapy (ESWT) in vivo affects the structural integrity of articular cartilage. A single bout of ESWT (1500 shock waves of 0.5 mJ/mm(2)) was applied to femoral heads of 18 adult Sprague-Dawley rats. Two sham-treated animals served as controls. Cartilage of each femoral head was harvested at 1, 4, or 10 weeks after ESWT (n = 6 per treatment group) and scored on safranin-O-stained sections. Expression of tenascin-C and chitinase 3-like protein 1 (Chi3L1) was analyzed by immunohistochemistry. Quantitative real-time polymerase chain reaction (PCR) was used to examine collagen (II)alpha(1) (COL2A1) expression and chondrocyte morphology was investigated by transmission electron microscopy no changes in Mankin scores were observed after ESWT. Positive immunostaining for tenascin-C and Chi3L1 was found up to 10 weeks after ESWT in experimental but not in control cartilage. COL2A1 mRNA was increased in samples 1 and 4 weeks after ESWT. Alterations found on the ultrastructural level showed expansion of the rough-surfaced endoplasmatic reticulum, detachment of the cell membrane and necrotic chondrocytes. Extracorporeal shock waves caused alterations of hyaline cartilage on a molecular and ultrastructural level that were distinctly different from control. Similar changes were described before in the very early phase of osteoarthritis (OA). High-energy ESWT might therefore cause degenerative changes in hyaline cartilage as they are found in initial OA.
Propagation of atmospheric model errors to gravity potential harmonics - impact on GRACE de-aliasing
Resumo:
Many dissections seem to also have a retrograde component. The aim of the study was to evaluate different sites of primary entry tears and the propagation of the dissecting membrane, antegrade and retrograde, in an experimental model of acute type B aortic dissection.
Resumo:
Systems for indoor positioning using radio technologies are largely studied due to their convenience and the market opportunities they offer. The positioning algorithms typically derive geographic coordinates from observed radio signals and hence good understanding of the indoor radio channel is required. In this paper we investigate several factors that affect signal propagation indoors for both Bluetooth and WiFi. Our goal is to investigate which factors can be disregarded and which should be considered in the development of a positioning algorithm. Our results show that technical factors such as device characteristics have smaller impact on the signal than multipath propagation. Moreover, we show that propagation conditions differ in each direction. We also noticed that WiFi and Bluetooth, despite operating in the same radio band, do not at all times exhibit the same behaviour.