10 resultados para Project 2002-051-B : Right-sizing Airconditioning Systems
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.
Resumo:
During the selection, implementation and stabilization phases, as well as the operations and optimization phase of an ERP system (ERP-lifecycle), numerous companies consider to utilize the support of an external service provider. This paper analyses how different categories of knowledge influence the sourcing decision of crucial tasks within the ERP lifecycle. Based on a review of the IS outsourcing literature, essential knowledge-related determinants for the IS outsourcing decision are presented and aggregated in a structural model. It will be hypothesized that internal deficits in technological knowledge in comparison to external vendors as well as the specificity of the synthesis of special technological and specific business knowledge have a profound impact on the outsourcing decision. Then, a classification framework will be developed which facilitates the assignment of various tasks within the ERP lifecycle to their respective knowledge categories and knowledge carriers which might be internal or external stakeholders. The configuaration task will be used as an example to illustrate how the structural model and the classification framework may be applied to evaluate the outsourcing of tasks within the ERP lifecycle.
Resumo:
The Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) was created to evaluate our present ability to simulate large-scale wetland characteristics and corresponding methane (CH4) emissions. A multi-model comparison is essential to evaluate the key uncertainties in the mechanisms and parameters leading to methane emissions. Ten modelling groups joined WETCHIMP to run eight global and two regional models with a common experimental protocol using the same climate and atmospheric carbon dioxide (CO2) forcing datasets. We reported the main conclusions from the intercomparison effort in a companion paper (Melton et al., 2013). Here we provide technical details for the six experiments, which included an equilibrium, a transient, and an optimized run plus three sensitivity experiments (temperature, precipitation, and atmospheric CO2 concentration). The diversity of approaches used by the models is summarized through a series of conceptual figures, and is used to evaluate the wide range of wetland extent and CH4 fluxes predicted by the models in the equilibrium run. We discuss relationships among the various approaches and patterns in consistencies of these model predictions. Within this group of models, there are three broad classes of methods used to estimate wetland extent: prescribed based on wetland distribution maps, prognostic relationships between hydrological states based on satellite observations, and explicit hydrological mass balances. A larger variety of approaches was used to estimate the net CH4 fluxes from wetland systems. Even though modelling of wetland extent and CH4 emissions has progressed significantly over recent decades, large uncertainties still exist when estimating CH4 emissions: there is little consensus on model structure or complexity due to knowledge gaps, different aims of the models, and the range of temporal and spatial resolutions of the models.
Resumo:
Background: Patients presenting to the emergency department (ED) currently face inacceptable delays in initial treatment, and long, costly hospital stays due to suboptimal initial triage and site-of-care decisions. Accurate ED triage should focus not only on initial treatment priority, but also on prediction of medical risk and nursing needs to improve site-of-care decisions and to simplify early discharge management. Different triage scores have been proposed, such as the Manchester triage system (MTS). Yet, these scores focus only on treatment priority, have suboptimal performance and lack validation in the Swiss health care system. Because the MTS will be introduced into clinical routine at the Kantonsspital Aarau, we propose a large prospective cohort study to optimize initial patient triage. Specifically, the aim of this trial is to derive a three-part triage algorithm to better predict (a) treatment priority; (b) medical risk and thus need for in-hospital treatment; (c) post-acute care needs of patients at the most proximal time point of ED admission. Methods/design: Prospective, observational, multicenter, multi-national cohort study. We will include all consecutive medical patients seeking ED care into this observational registry. There will be no exclusions except for non-adult and non-medical patients. Vital signs will be recorded and left over blood samples will be stored for later batch analysis of blood markers. Upon ED admission, the post-acute care discharge score (PACD) will be recorded. Attending ED physicians will adjudicate triage priority based on all available results at the time of ED discharge to the medical ward. Patients will be reassessed daily during the hospital course for medical stability and readiness for discharge from the nurses and if involved social workers perspective. To assess outcomes, data from electronic medical records will be used and all patients will be contacted 30 days after hospital admission to assess vital and functional status, re-hospitalization, satisfaction with care and quality of life measures. We aim to include between 5000 and 7000 patients over one year of recruitment to derive the three-part triage algorithm. The respective main endpoints were defined as (a) initial triage priority (high vs. low priority) adjudicated by the attending ED physician at ED discharge, (b) adverse 30 day outcome (death or intensive care unit admission) within 30 days following ED admission to assess patients risk and thus need for in-hospital treatment and (c) post acute care needs after hospital discharge, defined as transfer of patients to a post-acute care institution, for early recognition and planning of post-acute care needs. Other outcomes are time to first physician contact, time to initiation of adequate medical therapy, time to social worker involvement, length of hospital stay, reasons fordischarge delays, patient’s satisfaction with care, overall hospital costs and patients care needs after returning home. Discussion: Using a reliable initial triage system for estimating initial treatment priority, need for in-hospital treatment and post-acute care needs is an innovative and persuasive approach for a more targeted and efficient management of medical patients in the ED. The proposed interdisciplinary , multi-national project has unprecedented potential to improve initial triage decisions and optimize resource allocation to the sickest patients from admission to discharge. The algorithms derived in this study will be compared in a later randomized controlled trial against a usual care control group in terms of resource use, length of hospital stay, overall costs and patient’s outcomes in terms of mortality, re-hospitalization, quality of life and satisfaction with care.
Resumo:
Most commercial project management software packages include planning methods to devise schedules for resource-constrained projects. As it is proprietary information of the software vendors which planning methods are implemented, the question arises how the software packages differ in quality with respect to their resource-allocation capabilities. We experimentally evaluate the resource-allocation capabilities of eight recent software packages by using 1,560 instances with 30, 60, and 120 activities of the well-known PSPLIB library. In some of the analyzed packages, the user may influence the resource allocation by means of multi-level priority rules, whereas in other packages, only few options can be chosen. We study the impact of various complexity parameters and priority rules on the project duration obtained by the software packages. The results indicate that the resource-allocation capabilities of these packages differ significantly. In general, the relative gap between the packages gets larger with increasing resource scarcity and with increasing number of activities. Moreover, the selection of the priority rule has a considerable impact on the project duration. Surprisingly, when selecting a priority rule in the packages where it is possible, both the mean and the variance of the project duration are in general worse than for the packages which do not offer the selection of a priority rule.